
Java Variables

Associate Prof. Dr. Norazah Yusof

Object Oriented
Programming – SCJ2153

Variables

• Variables are used to store data in a program.

• There are two types of variables in Java:

1. Primitive variables

2. Reference variables

2

Primitives Variables

• A primitive can be one of eight types: char, boolean, byte,
short, int, long, double, or float.

• Once a primitive has been declared, its primitive type can
never change, although in most cases its value can change.

• Primitive variables can be declared as class variables (statics),
instance variables, method parameters, or local variables.

• One or more primitives, of the same primitive type, can be
declared in a single line.

• Examples of primitive variable declarations:
– char oneLetter;

– boolean flag;

– int x, y, z;

– double area;

3

Reference Variables
• A reference variable is used to refer to an object.

• A reference variable is declared to be of a specific type and
that type can never be changed.

• Reference variables can be declared as static variables,
instance variables, method parameters, or local variables.

• One or more reference variables, of the same type, can be
declared in a single line.

• Examples of reference variable declarations:
– Object obj;

– Employee newEmployee;

– String myAddress;

4

Instance Variables

• Instance variables are defined inside the class, but outside of any
method, and are only initialized when the class is instantiated.

• Instance variables are the fields that belong to each unique object.
• For example, the following code defines fields (instance variables) for

the radius of circle objects:

• Each circle instance will know its own radius. In other words, each
instance can have its own unique values for this field.

• The term "field," "instance variable," "property," or "attribute," mean
virtually the same thing.

5

public class Circle extends Object //Class header

{

 private double radius;

Local Variables
• Local variables are variables declared within a method.

• Its life starts inside the method and destroyed when the
method has completed.

• Local variables are always on the stack, not the heap.

• Before the content of a local variable can be used, it
must be assigned with a value.

• The following print statement may cause error:

6

class TestLocalVar {

 public void myMethod() {

 int counter;

 System.out.println (counter);

 }

 }

Local Variables (cont.)

• A local variable can't be referenced in any code outside
the method in which it's declared.

• The statement counter = i below, will not compile
because the variable counter is refered outside of
method myMethod().

• However, the value of counter can be passed out of
the method to take on a new life.

7

class TestLocalVar {

 public void myMethod() {

 int counter = 10;

 }

 public void yourMethod(int i) {

 counter = i;

 }

}

Constant

• Constant represent permanent data that will never
change.

• To declare a constant need to use the final keyword.

• Syntax to declare a constant:

• final datatype CONSTANTNAME = value;

• For example:

 final double PI = 3.14159; //PI as constant

 final int SIZE = 3;

8

Constant(cont.)

• Once a constant has already assigned a value, it cannot
be assigned a new value .

• The statement MAX_SIZE = 100 below is illegal
because it tries to give new value to the constant .

9

class TestConstant {

 final int MAX_SIZE = 50;

 public void myMethod() {

 MAX_SIZE = 100;

 }

}

