OPENCOURSEWARE

Object Oriented
Programming — SCJ2153

Java Variables

Associate Prof. Dr. Norazah Yusof

Inspiring Creative and Innovative Minds

ocw.utm.my @W

Variables

e Variables are used to store data in a program.
 There are two types of variables in Java:

1. Primitive variables
2. Reference variables

........

ocw.utm.my ijﬂIThi

Primitives Variables

A primitive can be one of eight types: char, boolean, byte,
short, int, long, double, or float.

Once a primitive has been declared, its primitive type can
never change, although in most cases its value can change.

Primitive variables can be declared as class variables (statics),
instance variables, method parameters, or local variables.

One or more primitives, of the same primitive type, can be
declared in a single line.

Examples of primitive variable declarations:
— char oneletter;

— boolean flag;

— int x, vy, z;

— double area;

........

ocw.utm.my @HTM

Reference Variables

A reference variable is used to refer to an object.

A reference variable is declared to be of a specific type and
that type can never be changed.

Reference variables can be declared as static variables,
instance variables, method parameters, or local variables.

One or more reference variables, of the same type, can be
declared in a single line.

Examples of reference variable declarations:
— Object obj;

— Employee newEmployee;

— String myAddress;

ocw.utm.my @HTM

Instance Variables

Instance variables are defined inside the class, but outside of any
method, and are only initialized when the class is instantiated.

Instance variables are the fields that belong to each unique object.

For example, the following code defines fields (instance variables) for
the radius of circle objects:

public class Circle extends Object //Class header

{

private double radius;

Each circle instance will know its own radius. In other words, each
instance can have its own unique values for this field.

The term "field," "instance variable," "property," or "attribute," mean
virtually the same thing.

........

........

ocw.utm.my ijﬂIThi

Local Variables

Local variables are variables declared within a method.

Its life starts inside the method and destroyed when the
method has completed.

Local variables are always on the stack, not the heap.

Before the content of a local variable can be used, it
must be assigned with a value.

The following print statement may cause error:

class TestLocalVar {
public void myMethod () {
int counter;
System.out.println (counter);

}
}

ocw.utm.my UTM

Local Variables (cont.)

* Alocal variable can't be referenced in any code outside
the method in which it's declared.

e The statement counter = 1i below, will not compile

because the variable counter is refered outside of
method myMethod ().

class TestLocalVar {
public void myMethod () {
int counter = 10;

}
public void yourMethod (int 1) {
counter = 1i;
}
}

* However, the value of counter can be passed out of
the method to take on a new life.

ocw.utm.my @UTM

LAY PR P TR

Constant

Constant represent permanent data that will never
change.

To declare a constant need to use the final keyword.
Syntax to declare a constant:

final datatype CONSTANTNAME = value;
For example:

final double PI = 3.14159; //PI as constant
final int SIZE = 3;

ocw.utm.my ijhw

Constant(cont.)

Once a constant has already assigned a value, it cannot
be assigned a new value .

The statement MAX SIZE = 100 below is illegal
because it tries to give new value to the constant .

class TestConstant {
final int MAX SIZE = 50;

public void myMethod () {
MAX SIZE = 100;
}
}

........

