OPENCOURSEWARE

Application of Statistics in Educational Research I MPU1034

SINGLE-SAMPLE *t* **TEST***

Prof. Dr. Mohd Salleh Abu Dr. Hamidreza Kashefi

main source: Vernoy & Vernoy (1997)

innovative • entrepreneurial • global

ocw.utm.my

The General Idea

- Performing hypothesis testing on a single group of sample
- Similar test as z test but applied on a small size sample
- ✓ Can be approximated by z test if n is large enough
- \checkmark Hypotheses to be tested:

$$H_{o}: \quad \mu_{\overline{X}} = \mu$$
$$H_{1}: \quad \mu_{\overline{X}} \neq \mu$$

<u>Note</u>: We MUST know μ to perform a single-sample *t* test!

Computing t Score

✓ The formula for computing the t score is essentially the same as that for computing the z score:

(if the standard deviation of population is known)

or

(if the standard deviation of population is unknown)

where

est. $\sigma_{\overline{x}}$

is the estimated std error of mean

Estimating The Std. Deviation & Std. Error

<u>Question</u>: How to compute the standard error of the mean est. $\sigma_{\bar{x}}$?

✓ If we know the standard deviation of the population, we should use it; in this case,

$$t = \frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}}$$
where $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$, $\sigma_{\overline{king}}$ where $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$, $\sigma_{\overline{king}}$ where $\sigma_{\overline{X}} = \sigma_{\overline{X}}$, $\sigma_{\overline{K}} = \sigma_{\overline{K}}$

- \checkmark If we do not, we must estimate it. We can do this in two ways:
 - Use Formula 10.6 to obtain the estimated standard deviation of the population and then use Formula 12.1, which follows, to compute the standard error of the mean:

est.
$$\sigma = \sqrt{\frac{\Sigma(X - \overline{X})^2}{n - 1}} = \sqrt{\frac{\Sigma X^2 - (n \cdot \overline{X}^2)}{n - 1}}$$
 (10.6)
est. $\sigma_{\overline{X}} = \frac{\text{est. } \sigma}{\sqrt{n}}$ (12.1)

 If we don't have access to raw data, we must use another method, which involves the formula 12.2:

Example:

Dr. Tee has developed a language-training system that, she claims, significantly increases the number of new words. acquired by infants. Average children in this part of the world begin to speak a few basic words by the time they are 1 year old; by the time they are 2, average toddlers have a vocabulary of 210 words. To test her system, Dr. Tee randomly selects 12 sets of parents who are willing to use her language-training system with their newborn infants for 2 years. At the end of the 2-year test period, she tabulates the number of words in each toddler's vocabulary. The results are as displayed.

Test the existence of significant increase of Dr. Tee's language-training using onetailed *t* test at $\alpha = 0.05$ (as compared with the population!)

Child	Number of words in vocabulary X
C. W.	197
D. J.	223
P. V.	241
J. I.	183
т. В.	222
В. С.	231
R. A.	297
В. В.	220
D. T.	188
P. P.	231
C. D.	210
M. L.	234

- H_o: The language-training system will make no difference in the size of a child's vocabulary as measured at age 2 years.
- H₁: The language-training system will increase the size of a child's vocabulary as measured at age 2 years.

Wailable Indices:
$$\overline{X} = meon of somple = 223.083$$
 $S = 5td. dev. of somple = 28.474$ $n = Sample size = 12$ $df = degree of freedom = 12-1$ $df = degree of freedom = 12-1$ $for single-somple$ $\mathcal{M} = meon of population = 210$

$$H_{o}: \quad \mu_{\overline{X}} = \mu$$
$$H_{1}: \quad \mu_{\overline{X}} \neq \mu$$

Language-1	Fraining System	
Nun	nber of words in voo X	abulary X²
	197	38,809
C. W.	223	49,729
р. J.	241	58,081
	183	33,489
т. В.	222	49,284
В. С.	231	53,361
R. A.	297	88,209
В. В.	220	48,400
D. T.	188	35,344
P. P.	231	53,361
C. D.	210	44,100
M. L.	234	54,756
	$\Sigma X = 2677$	$\Sigma X^2 = 606,923$
	\overline{X} = 223.083	
	S = 28.474	

Computing est.
$$0\overline{x}$$

Method 1:
 $est. \ 0\overline{x} = \int \frac{3}{\ln - 1} = \frac{28.474}{\int 11}$
 $= 8.584$
Method 2:
 $est. \ 0 = \int \frac{\sum x^2 - (n\overline{x}^2)}{n - 1}$
 $= \int \frac{606.923 - 12(23.083)^2}{12 - 1}$
and therefore
 $est. \ 0\overline{x} = \frac{est. \ 0}{\int n} = \frac{29.742}{\int 12}$
 $= 8.586$
 $\cong 8.584$

Computing t score:

$$t = \frac{\overline{x} - M\overline{x}}{est. 6\overline{x}} \quad \text{with } H_0: M\overline{x} = M$$
where $\overline{x} = 223.083$
 $M = 210$
If H_0 is true (i.e. $M\overline{x} = M$)

$$t = \frac{\overline{x} - M}{est. 6\overline{x}}$$

$$= \frac{223.083 - 210}{8.584} \approx 1.524$$
Computing df:
For a single-sample t test,
 $df = n - 1 = 12 - 1 = 11$

10	0.260	0.700	1.372	1.812
11	0.260	0.697	1.363	1.796
12	0.259	0.695	1.356	1.782
13	0.259	0.694	1.350	1.771
14	0.258	0.692	1.345	1.761

Finding the critical value of t
for rejection of H. (one-toiled,
$$\alpha = 0.05$$
)
From the t table (with $df = 12$),
the critical value of that 0.05 level
is
 $t = 1.796$

Conclusion:

x=0.05 t=1.524 C.V: 1.796 Fail to reject Ho i.e. Dr. Tee's language training system will make no significant différence in the size of a child's vocabulary.

Performing Single-Sample t Test Using SPSS*

Strong Note:

You must put $\mu = 210$ as the test value for this particular case!

The Syntax: T-TEST /TESTVAL = 210 /MISSING = ANALYSIS /VARIABLES = No_Words /CRITERIA = CI(.95).

One-Sample Statistics:

Variable	N	Mean	Std. Dev.	SE Mean
No_Words	12	223.083	29.740	8.585

One-Sample Test (Test Value $\mu = 210$, $\alpha = 0.05$ 2-tailed)

Variable	t	df	Sig. (2- tailed)	Mean Difference	95% Co Interva Diffe	nfidence al of the rence
					Lower	Upper
No_Words	1.524	11	0.156	13.083	-5.812	31.979

How to Draw A Conclusion About The Test?

Method 1	Check the significant value of p ; Reject H ₀ if $p < \alpha$
Method 2	Check the value of t ; Reject H_o if t falls in the rejection region (refer to $t_{c.v}$ identified from the Table t)