SSCE1993 ENGINEERING MATHEMATICS

SURFACE INTEGRALS

PM DR MUNIRA BINTI ISMAIL DR RASHIDAH BINTI AHMAD
innovative • entrepreneurial • global

SURFACE INTEGRAL

Surface Integral of a scalar field $\rho(x, y, z)$ with respect to surface area S, a part of σ, a surface in 3D over a region R in the $x y$-plane, and \mathbf{N} is any outward unit normal to σ, is given by

$$
\iint_{\sigma} \rho(x, y, z) d S
$$

Evaluating Surface Integral with respect to surface area $S, \iint_{\sigma} \rho(x, y, z) d S$
is by evaluating the double integrals over the region R where $d S=|\mathbf{N}| d A$. If σ is given by $z=f(x, y) \quad$, substitute this into the scalar field ρ, and the formula $|\mathbf{N}|=\sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1}$ then

$$
\begin{aligned}
& \iint_{\sigma} \rho(x, y, z) d S=\iint_{R} \rho(x, y, f(x, y))|\mathbf{N}| d A \\
& =\iint_{R} \rho(x, y, f(x, y)) \sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1} d A
\end{aligned}
$$

Class Activity: Write down the evaluation of Surface Integral with respect to surface area S
when σ is given by : (a) $y=h(x, z)$ (b) $x=g(y, z)$
Class Activity: (a)Evaluate $\iint_{\sigma} x^{2} y d S$
where σ is $y^{2}+x^{2}=a^{2}$ in the first octant between the planes $x=0, x=9, z=y$ and $z=2 y$.
(b) Evaluate $\iint_{\sigma} x y z d S$ where σ is $y^{2}=x$ in the first octant between the planes
$z=0, z=9, z=y$ and $y=2$.

Application of Surface Integral: FLUX

is the measure of the flow of a vector field

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

spreading onto a surface σ in the direction of an outward unit normal \mathbf{n} to σ, is denoted and given by

$$
\text { Flux } \mathbf{F}=\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} d S
$$

How to Evaluate Surface Integral \iint_{σ} F.n $d S$,

where $d S=|\mathbf{N}| d A$ and $\mathbf{n}=\frac{\mathbf{N}}{|\mathbf{N}|}$, is reduced to
solving a double integrals of the scalar field $\mathbf{F} \cdot \mathbf{N}$ over the region R in the $x y$-plane defined by the surface σ :

$$
\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} d S=\iint_{R} \mathbf{F} \cdot \frac{\mathbf{N}}{|\mathbf{N}|}|\mathbf{N}| d A=\iint_{R} \mathbf{F} \cdot \mathbf{N} d A
$$

OPENCOURSEWARE
Class Activity: Find an outward normal vector \mathbf{N} of a surface σ given by:
(a) $z=4-y^{2}-x^{2}$
(b) $z=y^{2}+x^{2}$
(c) $y=4-z^{2}$
(d) $y=z^{2}+x^{2}$
(e) $x=4-y^{2}-z^{2}$
(f) $x=z^{2}+y^{2}$

Class Activity: Evaluate \iint_{σ} F.n $d S$ where \mathbf{n} is the outward unit normal, σ is the portion the surface given by:
(a) $z+x+y=1 \quad$ in the first octant of the three dimensional coordinate system, while

$$
\mathbf{F}(x, y, z)=(x+y) \mathbf{i}+N(y+z) \mathbf{j}+R(x+z) \mathbf{k} .
$$

(b) $z=1-x^{2}-y^{2}$ that lies above the -plane in the three dimensional coordinate system, while

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} .
$$

Class Activity: Evaluate \iint_{σ} F.n $d S$ where σ is a piecewise surface consisting of $\sigma_{1}, \sigma_{2}, \sigma_{3}$ joined together at some edges, then

$$
\iint_{\sigma} \mathbf{F} . \mathbf{n} d S=\iint_{\sigma_{1}} \text { F.n } d S+\iint_{\sigma 2} \text { F.n } d S=\iint_{\sigma_{3}} \text { F.n } d S
$$

Class Activity: Evaluate \iint_{σ} F.n $d S$ where σ is a piecewise surface consisting of the planes $x=3, x=0, z=0 \quad$ such that

$$
\mathrm{O} \leq x \leq=3,0 \leq y \leq 2,0 \leq z \leq 1
$$

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}-z \mathbf{k}
$$

Class Activity: Evaluate \iint_{σ} F.n $d S$ where σ is a closed surface enclosing a region of space or a solid G . Some example of a closed surface is the sphere or a closed cuboid.

Class Activity: Evaluate \iint_{σ} F.n $d S$ where is a closed cuboid such that

$$
0 \leq x \leq=3,0 \leq y \leq 2,0 \leq z \leq 1
$$

and

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}-z \mathbf{k}
$$

Divergence Theorem or Gauss theorem

If σ is a closed surface enclosing a solid G

$$
\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{G} \nabla \cdot \mathbf{F} d V
$$

Where $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$
and

$$
\nabla \cdot \mathbf{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial R}{\partial z}
$$

is the divergence of \mathbf{F}.
innovative entrepreneurial global

Class Activity: Use the divergence theorem to evaluate $\iint_{\sigma} \mathbf{F} . \mathbf{n} d S$ where ois a closed surface:
(a) or cuboid defined as $0 \leq x \leq=3,0 \leq y \leq 2,0 \leq z \leq 1$ and $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}-z \mathbf{k}$.
(b) Is the closed circular cylinder $x^{2}+y^{2}=9$ between the planes $z=2$ and $z=0$
and $\mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{2} \mathbf{k}$.
(c)Is the closed hemisphere $\sqrt{9-x^{2}-y^{2}}$ and

$$
z=0 \text { and } \quad \mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k} .
$$

Stoke's Theorem

If σ is an open surface whose boundary is a closed curve C in the three dimensional coordinate system, then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{\sigma}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
$$

Where the orientation of the normal vector \mathbf{n} of
σ and the direction of how \mathbf{F} circulates around the boundary C whether clockwise or otherwise, obeys the right-hand rule.

Class Activity: following problems

(a) A hemisphere σ is given by $x^{2}+y^{2}+z^{2}=4$ that lies above the $x y$-plane and \mathbf{n} is its outward unit normal vector with the vector field $\mathbf{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{2} \mathbf{k}$. Use Stokes theorem to evaluate $\iint_{\sigma}(\nabla \times \mathbf{F}) . \mathbf{n} d S$
(b) Use Stoke's theorem to evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+4 x y^{3} \mathbf{j}+y^{2} x \mathbf{k}$ and C is the rectangle on the plane $z=y$ whose vertices are

$$
(0,-5,-5),(3,-5,-5),(3,5,5),(0,5,5)
$$

clock direction if viewed from above the $x y$ plane

Reference

- Glyn James (2010). Advanced Modern Engineering Mathematics, $4^{\text {th }}$ Edition. Prentice Hall Pearson Education Ltd.
- Howard Anton(2005). Multivariable Calculus, $8^{\text {th }}$ Edition. . John Wiley \& Sons Inc.
- Kreyszig (2011). Advanced Engineering Mathematics, 10 ${ }^{\text {th }}$ Edition. John Wiley \& Sons Inc.
- Maslan Osman \& Yusof Yaacob, 2008. Multivariable and Vector Calculus, UTM Press.
- Yudariah, Roselainy \& Sabariah. Multivariable Calculus for Indpt. Learners, Revised $2^{\text {nd }}$ Ed. 2011. Pearson Educ. Pub.

