

SSCE1993 ENGINEERING MATHEMATICS

SURFACE INTEGRALS

PM DR MUNIRA BINTI ISMAIL DR RASHIDAH BINTI AHMAD

innovative • entrepreneurial • global

SURFACE INTEGRAL

Surface Integral of a scalar field $\rho(x, y, z)$ with respect to surface area S, a part of σ , a surface in 3D over a region R in the xy -plane, and \mathbf{N} is any outward unit normal to σ , is given by

$$\iint_{\sigma} \rho(x, y, z) dS$$

Evaluating Surface Integral with respect to surface area S, $\iint_{\sigma} \rho(x, y, z) dS$

is by evaluating the double integrals over the region *R* where $dS = |\mathbf{N}| dA$. If $\boldsymbol{\sigma}$ is given by z = f(x, y), substitute this into the scalar field $\boldsymbol{\rho}$, and the formula $|\mathbf{N}| = \sqrt{(f_x)^2 + (f_y)^2 + 1}$ then

$$\iint_{\sigma} \rho(x, y, z) dS = \iint_{R} \rho(x, y, f(x, y)) |\mathbf{N}| dA$$

$$= \iint_{R} \rho(x, y, f(x, y)) \sqrt{(f_{x})^{2} + (f_{y})^{2} + 1} dA$$

Class Activity: Write down the evaluation of Surface Integral with respect to surface area Swhen σ is given by : (a) y = h(x,z) (b) x = g(y,z)

Class Activity: (a)Evaluate $\iint_{\sigma} x^2 y dS$ where σ is $y^2 + x^2 = a^2$ in the first octant between the planes x = 0, x = 9, z = y and z = 2y. (b) Evaluate $\iint_{\sigma} xyz dS$ where σ is $y^2 = x$ in the first octant between the planes z = 0, z = 9, z = y and y = 2.

Application of Surface Integral: FLUX

is the measure of the **flow** of a vector field $\mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$ spreading onto a surface $\boldsymbol{\sigma}$ in the direction of an **outward unit normal m** to $\boldsymbol{\sigma}_{r}$ is denoted and given by

$$\mathsf{Flux}\,\mathbf{F} = \iint_{\sigma} \mathbf{F.n}\,dS$$

innovative • entrepreneurial • global

How to Evaluate Surface Integral $\iint_{\sigma} \mathbf{F.n} dS$,

where
$$dS = |\mathbf{N}| dA$$
 and $\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|}$, is reduced to

solving a double integrals of the scalar field $\mathbf{F} \cdot \mathbf{N}$ over the region R in the xy -plane defined by the surface σ :

$$\iint_{\sigma} \mathbf{F.n} \, dS = \iint_{R} \mathbf{F.} \frac{\mathbf{N}}{|\mathbf{N}|} |\mathbf{N}| \, dA = \iint_{R} \mathbf{F.N} \, dA$$

ocw.utm.my

Class Activity: Find an outward normal vector N of a surface σ given by:

(a)
$$z = 4 - y^{2} - x^{2}$$
 (b) $z = y^{2} + x^{2}$
(c) $y = 4 - z^{2}$ (d) $y = z^{2} + x^{2}$
(e) $x = 4 - y^{2} - z^{2}$ (f) $x = z^{2} + y^{2}$

innovative • entrepreneurial • global

(a) z + x + y = 1 in the first octant of the three dimensional coordinate system, while $\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + N(y + z)\mathbf{j} + R(x + z)\mathbf{k}$

(b) $z = 1 - x^2 - y^2$ that lies above the -plane in the three dimensional coordinate system, while $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

$$\iint_{\sigma} \mathbf{F.n} \, dS = \iint_{\sigma_1} \mathbf{F.n} \, dS + \iint_{\sigma_2} \mathbf{F.n} \, dS = \iint_{\sigma_3} \mathbf{F.n} \, dS$$

Class Activity: Evaluate $\iint_{\mathbf{F}} \mathbf{F} \cdot \mathbf{n} \, dS$ where σ is a piecewise surface consisting of the planes x = 3, x = 0, z = 0such that $0 \le x \le 3, 0 \le y \le 2, 0 \le z \le 1$ $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} - z\mathbf{k}$ and

Class Activity: Evaluate $\iint \mathbf{F.n} \, dS$ where σ is a closed surface enclosing a region of space or a solid G. Some example of a closed surface is the sphere or a closed cuboid.

Class Activity: Evaluate $\iint_{\mathbf{F}} \mathbf{F} \cdot \mathbf{n} \, dS$ where is a closed cuboid such that $0 \le x \le 3, 0 \le y \le 2, 0 \le z \le 1$ $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} - z\mathbf{k}$

and

ocw.utm.my

UTTM

Divergence Theorem or Gauss theorem

OPENCOURSEWARE

If
$$\sigma$$
 is a closed surface enclosing a solid G

$$\iint_{\sigma} \mathbf{F.n} \, dS = \iiint_{\sigma} \nabla \cdot \mathbf{F} \, dV$$
Where $\mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$
and $\nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial R}{\partial z}$

is the divergence of \mathbf{F} .

Class Activity: Use the divergence theorem to evaluate $\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} \, dS$ where $\boldsymbol{\sigma}$ is a closed surface:

- (a) or cuboid defined as $0 \le x \le 3, 0 \le y \le 2, 0 \le z \le 1$ and $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} - z\mathbf{k}$.
- (b) Is the closed circular cylinder $x^2 + y^2 = 9$ between the planes z=2 and z=0
- and **F**(*x*, *y*, *z*) = x^{3} **i** + y^{3} **j** + z^{2} **k**.

(c)Is the closed hemisphere $\sqrt{9-x^2-y^2}$ and

z = 0 and $\mathbf{F}(x, y, z) = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$.

Stoke's Theorem

If σ is an open surface whose boundary is a closed curve C in the three dimensional coordinate system, then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_\sigma (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS$$

Where the orientation of the normal vector \mathbf{n} of $\boldsymbol{\sigma}$ and the direction of how \mathbf{F} circulates around the boundary C whether clockwise or otherwise, obeys the right-hand rule.

Class Activity: following problems

- (a) A hemisphere σ is given by $x^2 + y^2 + z^2 = 4$ that lies above the xy-plane and \mathbf{n} is its outward unit normal vector with the vector field $\mathbf{F}(x, y, z) = x^3 \mathbf{i} + y^3 \mathbf{j} + z^2 \mathbf{k}$. Use Stokes theorem to evaluate $\iint_{\sigma} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$
- (b) Use Stoke's theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + 4xy^3 \mathbf{j} + y^2 x \mathbf{k}$ and *C* is the rectangle on the plane z = y whose vertices are (0, -5, -5), (3, -5, -5), (3, 5, 5), (0, 5, 5)

clock direction if viewed from above the XY plane.

Reference

- Glyn James (2010). Advanced Modern Engineering Mathematics, 4th Edition. Prentice Hall Pearson Education Ltd.
- Howard Anton(2005). Multivariable Calculus, 8th Edition. . John Wiley & Sons Inc.
- Kreyszig (2011). Advanced Engineering Mathematics, 10th Edition. John Wiley & Sons Inc.
- Maslan Osman & Yusof Yaacob, 2008. Multivariable and Vector Calculus, UTM Press.
- Yudariah, Roselainy & Sabariah. Multivariable Calculus for Indpt. Learners, Revised 2nd Ed. 2011. Pearson Educ. Pub.