SSCE1993 ENGINEERING MATHEMATICS

LINE INTEGRAL

PM DR MUNIRA BINTI ISMAIL DR RASHIDAH BINTI AHMAD

innovative • entrepreneurial • global

LINE INTEGRAL

Line Integral of a scalar field $f(x, y, z)$ with respect to arclength S, or distance travelled from a point $A\left(x_{0}, y_{0}, z_{0}\right)$ to the point $B\left(x_{0}, y_{0}, z_{0}\right)$, on a curve C in 3D given by the vector equation

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

is

$$
\int_{C} f(x, y, z) d s
$$

Evaluate Line Integral with respect to arclength
$s, \int_{C} f(x, y, z) d s$ from $A\left(x_{0}, y_{0}, z_{0}\right)$ to $B\left(x_{0}, y_{0}, z_{0}\right)$
If C is given by the vector equation

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

implies the parametric equations

$$
x=x(t), y=y(t), z=z(t)
$$

where $\quad \mathbf{r}^{\prime}(t)=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}$ and $\quad\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}}$

$$
\int_{C} f(x, y, z) d s=\int_{A}^{B} f(x(t), y(t), z(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

OPENCOURSEWARE

Class Activity: Evaluate the following line integrals with respect to arclength s

$$
\begin{aligned}
& \text { (a) } \int_{C} 1+x y^{2} d s \text { where } C \text { is the curve in } \\
& \mathbf{r}(t)=t \mathbf{i}+2 t \mathbf{j}, \quad 0 \leq t \leq 1 .
\end{aligned}
$$

2D given by

$$
\text { (b) } \int_{C} x y+z^{3} d s \text { where } C \text { is th curve in }
$$

2D given by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ from $A(1,0,0)$
to $B(-1,0, \pi)$

Work Done As a Line Integral in $x y$-plane (2D)

Suppose a vector field $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j} \quad$ is acting on an object moving along a curve C in 2D from the point $A\left(x_{0}, y_{0}\right)$ to the point $A\left(x_{n}, y_{n}\right)$ and define the displacement vector $d \mathbf{r}=d x \mathbf{i}+d y \mathbf{j}$. Then work done or performed by the vector field \mathbf{F} on that object is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{\left(x_{0}, y_{0}\right)}^{\left(x_{n}, y_{n}\right)} M(x, y) d x+N(x, y) d y
$$

OPENCOURSEWARE

Class Activity: Evaluate the following line integrals in 2D

(a) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(t)=y \mathbf{i}+x y^{2} \mathbf{j}$ and the path
is theceurve (i) $y=x^{2}$ (ii) $x=y^{2}$
in 2D from the point $(0,0)$ to $(1,1)$.
(b) $\int_{C} x^{2} d x-x y d y$ where the path C is a
piecewise curve consisting of the shortest part from the point $(0,2)$ to $(2,0)$ on the circle of radius 2 , center at the origin, and then on the line segment from $(2,0)$ to ($0,-2$).

Properties of Line Integral

(a) Line Integral is dependent on its path

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r} \neq \int_{C_{2}} \mathbf{F} \cdot d \mathbf{r} \neq \int_{c_{c}} \mathbf{F} \cdot d \mathbf{r}
$$

(b) The order of line integral is from starting point A to destination point B and not in the order of the parametric increment of the given path.

$$
\int_{A}^{B} \mathbf{F} \cdot d \mathbf{r} \neq \int_{B}^{A} \mathbf{F} \cdot d \mathbf{r} \quad \text { In fact, } \quad \int_{A}^{B} \mathbf{F} \cdot d \mathbf{r}=-\int_{B}^{A} \mathbf{F} \cdot d \mathbf{r}
$$

Properties of Line Integral

(c) For a piecewise curve consisting of $C=C_{1}+C_{2}+C_{3}$

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}
$$

(d) Line integral on a closed path C is denoted by

$$
\oint_{c} \mathbf{F} \cdot d \mathbf{r}
$$

Class Activity :llustrate some properties of line integrals through the previous and the following examples.

(a) Evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$

where $\mathbf{F}(x, y)=(x+y) \mathbf{i}+x y \mathbf{j}$ and C is a closed path consisting of line segments forming a triangle whose vertices are $(2,0),(0,2)$ to $(-2,0)$ and back to $(2,0)$

Green's Theorem for Line Integral in 2D

Say a vector field in the $x y$-plane (2D) is given by

$$
\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}
$$

Where the curl of \mathbf{F} is defined by

$$
\text { Curl }_{\mathbf{F}}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} \text {; }
$$

and C is a closed curve which defines a simply
connected region R enclosed in C, in the $x y$-plane. If Curl $\mathbf{F} \neq \boldsymbol{0}^{\text {then }}$ tine integral on can be found using Green Theorem, the formula:

$$
\oint_{C} M(x, y) d x+N(x, y) d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A .
$$

Class Activity :Use Green Theorem to evaluate the following line integral in 2D.
(a) $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=(x+y) \mathbf{i}+x y \mathbf{j}$ and C is a closed path consisting of line segments forming a triangle whose vertices are $(2,0),(0,2)$ to $(-2,0)$ and back to (2,0) .

Class Activity :Use Green Theorem to evaluate the following line integral in 2D.
(b) $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=\left(e^{x}-y^{3}\right) \mathbf{i}+\left(\cos y+x^{3}\right) \mathbf{j}$ and \boldsymbol{C} is the unit circle in the anticlockwise direction.
(c) $\oint_{C} x^{2} y d x+x d y$ where C is the triangular path starting at the origin to $(1,0)$ to $(1,2)$.

Line Integral in $x y z$-space (3D)

Suppose a vector field $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}+R(x, y, z) \mathbf{k}$ is acting on an object moving along a curve C in 3D from the point $A\left(x_{0}, y_{0}, z_{0}\right)$ to the point $A\left(x_{n}, y_{n}, z_{n}\right)$ and define the displacement vector $d \mathbf{r}=d \mathbf{x} \mathbf{i}+d \mathbf{y} \mathbf{j}+d \mathbf{k} \mathbf{k}$. Then the work done or performed by the vector field \mathbf{F} on that object is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{\left(x_{n}, y_{n}, z_{n}\right)} M(x, y, z) d x+N(x, y, z) d y+R(x, y, z) d z
$$

Class Activity: Evaluate the following line integrals in 3D

$$
\text { (a) } \int_{C} \mathbf{F} \cdot d \mathbf{r} \text { where } \quad \mathbf{F}(t)=y z \mathbf{i}-x z \mathbf{j}+x y \mathbf{k}
$$

and the path \boldsymbol{C} is $\mathbf{r}(t)=e^{t} \mathbf{i}+e^{3 t} \mathbf{j}+e^{-t} \mathbf{k} \quad$ for $0 \leq t \leq 1$.
(b) $\int_{C} x^{3} d x+x y d y+z^{3} d z$ where the path C is
$x=\sin t, y=\cos t, z=t^{2}$ for $\quad 0 \leq t \leq \pi / 2$ 。
(c) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(t)=(y+z) \mathbf{i}+(x-z) \mathbf{j}+(x+y) \mathbf{k}$ and the path \boldsymbol{C} is the line segment from $\boldsymbol{A}(\mathbf{1}, \mathbf{2}, \mathbf{3})$ to $\boldsymbol{B}(4,0,5)$ to $\boldsymbol{C}(-4,3,0)$

CONSERVATIVE VECTOR FIELD

A vector field \mathbf{F} is said to be conservative if and only if
(a) $\Delta \times \mathbf{F}=\mathbf{O}$
(b) $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any closed curve C
(c) $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}$
(d) There exist a potential function $\phi(x, y, z)=k$
so that $\nabla \boldsymbol{\phi}=\mathbf{F}$ and k is any arbitrary
constant.

The fundamental theorem for line integral

If the vector field \mathbf{F} is conservative and there exist the potential function is $\phi(x, y, z)=k$
Then the value of the line integral from an initial point $A\left(x_{0}, y_{0}, z_{0}\right)$ to destination point $A\left(x_{n}, y_{n}, z_{n}\right)$
is

$$
\int_{A}^{B} \mathbf{F} \cdot d \mathbf{r}=\phi_{B}-\phi_{A}=\phi\left(x_{0}, y_{0}, z_{0}\right)-\phi\left(x_{n}, y_{n}, z_{n}\right) .
$$

Class Activity: Solve the following problems by using the fundamental

theorem of line integrals

(a) Say $\mathbf{F}=2 x y^{3} \mathbf{i}+\left(1+3 x^{2} y^{2}\right) \mathbf{j}$ is conservative. Find its potential function and hence evaluate the line integral $\int_{c} \mathbf{F} \cdot d \mathbf{r}$ where C is the line segment
(i) from $(2,3)$ to $(-1,2)$
(ii) from $(2,3)$ to $(0,0)$ to $(-1,2)$
(iii) from $(2,3)$ to $(0,0)$ to $(-1,2)$ back to $(2,3)$

Class Activity: Potential Problem

(b) Say the vector field

$$
\mathbf{F}=\left(e^{x} \cos y+y z\right) \mathbf{i}+\left(x z-1+e^{x} \sin y\right) \mathbf{j}+(x y+z) \mathbf{k}
$$

Is acting on an object. If $\nabla \boldsymbol{\phi}=\mathbf{F}$, find the potential function and find work done to move this object from point ($0,0,0$) to point (π, π, π)

Reference

- Glyn James (2010). Advanced Modern Engineering Mathematics, $4^{\text {th }}$ Edition. Prentice Hall Pearson Education Ltd.
- Howard Anton(2005). Multivariable Calculus, $8^{\text {th }}$ Edition. . John Wiley \& Sons Inc.
- Kreyszig (2011). Advanced Engineering Mathematics, 10 ${ }^{\text {th }}$ Edition. John Wiley \& Sons Inc.
- Maslan Osman \& Yusof Yaacob, 2008. Multivariable and Vector Calculus, UTM Press.
- Yudariah, Roselainy \& Sabariah. Multivariable Calculus for Indpt. Learners, Revised $2^{\text {nd }}$ Ed. 2011. Pearson Educ. Pub.

