SSCE1993 ENGINEERING MATHEMATICS

MULTIVARIABLE FUNCTIONS

PM DR MUNIRA BINTI ISMAIL DR RASHIDAH BINTI AHMAD

What is $y=f(x)$?

y is a single variable function of x

y is the dependent variable x is the independent variable
f is a rule or formula that x must follow that will give a unique value of y

What is the domain and range of the function $y=f(x)$?

The domain of f is the set of all values x that are real and satisfying $y=f(x)$ all non-real values of y are avoided.
The range of f is the set of all real values of y satisfying $y=f(x)$ for all x in its domain.

The domain and the range of f are denoted by

$$
D_{f}=\{x / x \in R\} \quad R_{f}=\{y / y \in R\}
$$

We can represent $y=f(x)$ in a two dimensional coordinate systems (2D).

Example: The graph of $y=x^{2}$

The graph of $y=f(x)$ is a curve in 2D.

Classroom activity: Sketch the following curves in 2D.

1) $y=x, \quad$ 2) $y=2 x+1, \quad$ 3) $y=x^{3}, \quad$ 4) $y=\frac{1}{x}$,
2) $\left.\left.y=4-x^{2}, ~ 6\right) ~ x=y^{2}, ~ 7\right) ~ x^{2}+y^{2}=4$,
3) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1, \quad$ 9) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$.

What is $\quad z=f(x, y)$?

z is a two variable function of (x, y)
z is the dependent variable (x, y) is the independent variable
f is a rule or formula that (x, y) must follow that will give a unique value of z

What is the domain and range of the function $z=f(x, y)$?

The domain of f is the set of all values (x, y) that are real and satisfying $z=f(x, y)$ such that all the non-real values of z are avoided.

The range of f is the set of all real values of z satisfying $z=f(x, y)$ for all (x, y) in its domain, and they can be denoted by

$$
D_{f}=\{(x, y) / x \in R, y \in R\} \quad R_{f}=\{z / z \in R\}
$$

Some Examples of $z=f(x, y)$.

$$
\begin{aligned}
& z=f(x, y)=\sqrt{x^{2}+y^{2}}, \\
& z=f(x, y)=x^{2}+y^{2}, \\
& z=f(x, y)=\sqrt{4-x^{2}-y^{2}} .
\end{aligned}
$$

The Three Dimensional Coordinate System (3D)

Class Activity :Sketch the following surfaces in 3D.

$$
\begin{aligned}
& y=x, y=2 x+1, y=x^{3}, y=\frac{1}{x}, y=4-x^{2}, x=y^{2}, x^{2}+y^{2}=4, \\
& \frac{x^{2}}{4}+\frac{y^{2}}{9}=1, \frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \\
& z=\sqrt{x^{2}+y^{2}}, z=x^{2}+y^{2}, z=\sqrt{4-x^{2}-y^{2}} \\
& x^{2}+y^{2}+z^{2}=4, \frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1, \frac{x^{2}}{4}-\frac{y^{2}}{9}+z^{2}=1
\end{aligned}
$$

$z=f(x, y) \quad$ can be represented as a set of level curves in 2D

When we substitute w with several constant c where $c \in R_{f}$ we obtained several curves $c=f(x, y)$ that can be sketch in one 2D graph. These curves in 3D are known as a set of level curves for $z=f(x, y)$
and each curve is labeled $z=c$

Class Activity :Sketch the level curves in 2D

 for the following $z=f(x, y)$ for $z=c$.$$
\begin{aligned}
& z=x^{2}+y^{2} ; z=0,1,2,3,4 \\
& z=y / x ; z=-2,-1,0,1,2 \\
& z=x^{2}+y ; z=-2,-1,0,1,2 \\
& z=x^{2}+9 y^{2} ; z=0,1,2,3,4
\end{aligned}
$$

OPENCOURSEWARE

$$
\text { What is } \quad w=f(x, y, z) ?
$$

w is a three variable function of (x, y, z)
w is the dependent variable
(x, y, z) is the independent variable
f is a rule or formula that (x, y, z) must follow that will give a unique value of w

What is the domain and range of the function $w=f(x, y, z)$

The domain of f is the set of all values (x, y, z) that are real and satisfying $w=f(x, y, z)$ such that all the non-real values of w are avoided.

The range of f is the set of all real values of w satisfying $w=f(x, y, z)$ for all (x, y, z) in its domain, and they can be denoted by

$$
D_{f}=\{(x, y, z) / x \in R, y \in R, z \in R\} \quad R_{f}=\{z / z \in R\}
$$

$w=f(x, y, z)$ can be represented as a set of level surfaces in 3D

When we substitute w with several constant c where $c \in R_{f}$ we obtained several surfaces $c=f(x, y, z)$ that can be sketch in one 3D graph. These surfaces in 3D are known as a set of level surfaces for $w=f(x, y, z)$ and each surface is labeled $w=c$.

Class Activity :Sketch the level surfaces in 3D for the following $w=f(x, y, z)$ for $w=c$.

$$
\begin{aligned}
& w=f(x, y, z)=x^{2}+y^{2}+z^{2} ; w=0,1,4,9 \\
& w=f(x, y, z)=4 x^{2}+y^{2}+4 z^{2} ; w=16 \\
& w=f(x, y, z)=x^{2}-y^{2}+z^{2} ; w=0 \\
& w=f(x, y, z)=2 x-4 y+z ; w=1
\end{aligned}
$$

Reference

- Glyn James (2010). Advanced Modern Engineering Mathematics, $4^{\text {th }}$ Edition. Prentice Hall Pearson Education Ltd.
- Howard Anton(2005). Multivariable Calculus, $8^{\text {th }}$ Edition. . John Wiley \& Sons Inc.
- Kreyszig (2011). Advanced Engineering Mathematics, 10 ${ }^{\text {th }}$ Edition. John Wiley \& Sons Inc.
- Maslan Osman \& Yusof Yaacob, 2008. Multivariable and Vector Calculus, UTM Press.
- Yudariah, Roselainy \& Sabariah. Multivariable Calculus for Indpt. Learners, Revised $2^{\text {nd }}$ Ed. 2011. Pearson Educ. Pub.

