

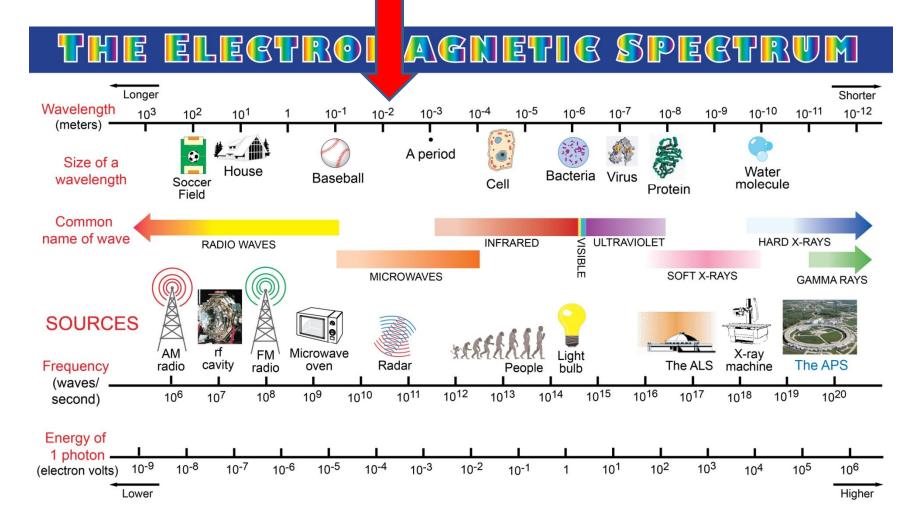
DDPP 2163 Propagation Systems

Microwave Devices and Antenna

Introduction

Innovative.Entrepreneurial.Global

ocw.utm.my


Introduction

- The lower boundary for microwave signals is conventionally set at 1 GHz.
- Microwave frequencies are 1 GHz and above UHF and SHF.
- Waveguides are used for high microwave frequencies and provide an alternative to conventional transmission lines.

Microwave Spectrum

Waveguides

- A waveguide is essentially a pipe through which electromagnetic waves travel.
- It is possible to build a waveguide for any frequency, but waveguides operate essentially as high-pass filters.
- Waveguides have no radiation loss.

Waveguides Examples

OPENCOURSEWARE

Rectangular Waveguides

Innovative.Entrepreneurial.Global

Other types of waveguides

Circular waveguide

Innovative.Entrepreneurial.Global

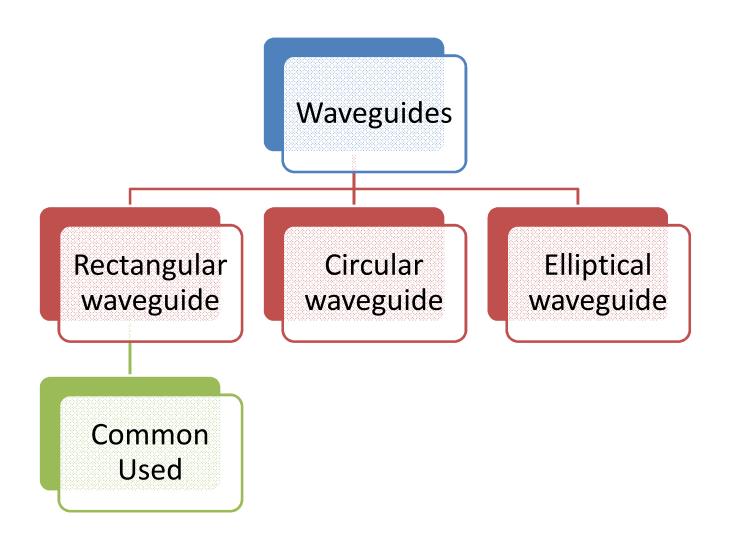
ocw.utm.my

Other types of waveguides

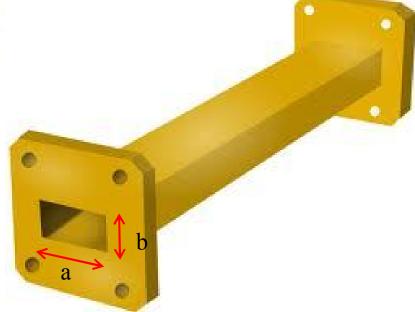
OPENCOURSEWARE

Circular-to-rectangular taper

Flexible waveguide


Innovative.Entrepreneurial.Global

Types of waveguides


Waveguides

- EM waves travel along the guide, by reflection to and from the walls.
- EM energy propagates down a waveguide by reflecting back and forth in a **zig-zag pattern**, with E-field *maximum* at the *center* of the guide and *zero* at the *surface* of the walls.

Waveguide does not conduct current

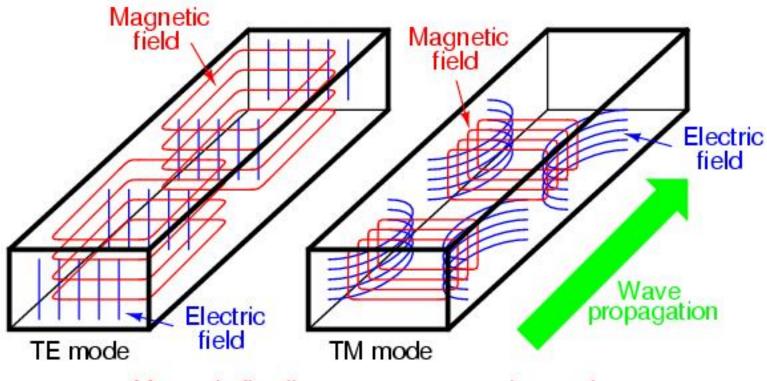
• Figure below show the cross-sectional view of a rectangular waveguide.

- a = longer dimension of the waveguide cross section
- b = shorter dimension of the waveguide cross section
- Typically ; a = 2b

Modes

- There are a number of modes that electrical energy can propagate along a waveguide.
- All modes must satisfy certain boundary conditions.
- Types of modes, which depends on the signal frequency
 - Low-order mode faster propagation
 - High-order mode slower propagation
- It is desirable to have only one mode propagating in a waveguide *Single mode propagation*.
- Multimode propagation causes a pulse to arrive at the far end at several different times

Dispersion limits the usefulness of waveguides with pulsed signals and other forms of modulation.


Mode Types

- Modes are designated as either transverse electric (TE) or transverse magnetic (TM).
- The term TE means that there is *no component of the electric field* along the length of the guide.
- Electric field line are everywhere transverse (i.e. perpendicular to the guide walls).

TE and TM Modes

Magnetic flux lines appear as continuous loops Electric flux lines appear with beginning and end points

Standard designation of TE & TM

- The standard designated the modes for rectangular waveguide as **TE**_{m.n} and **TM**_{m.n}.
- m and n are integers designating the number of *half-cycles of the wave* (electric or magnetic) that exists between each pair of walls.
- **m** is measured along the x-axis of the waveguide (**a** dimension).
- **n** is measured along the y-axis of the waveguide (**b** dimension).

Dominant Modes

- Dominant mode depends upon the shape of the waveguide.
- For a circular waveguide, the dominant mode is TE_{11} , but the TM_{01} mode is also used because it has circular symmetry.
- In a rectangular waveguide, the dominant mode is TE_{1,0}.
- Dominant mode because it is the most 'natural' mode and have the lowest cutoff frequency.

Cutoff frequency and Cutoff wavelength

- Each mode has a cutoff frequency.
- The cutoff frequency
 - the minimum frequency of operation in a waveguide
 - an absolute limiting frequency

- **frequency below** the cutoff frequency will **not** propagate through the waveguide

- The cutoff wavelength
 - minimum wavelength that a wave can propagate
 - the smallest free space wavelength that will not propagate in the waveguide

ocw.utm.my

Cutoff frequency and Cutoff wavelength

• The cutoff wavelength and frequency are determined by the cross-sectional dimensions of the waveguide.

$$\lambda_c = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}} \qquad f_C = \frac{c}{\lambda_C}$$

- The cutoff wavelength for $\mathbf{TE}_{1,0}$; $\lambda_C = 2 a$
- So, the cutoff frequency for $TE_{1,0}$; $f_C = \frac{c}{2a}$

where f_c = cutoff frequency (Hertz) λ_c = cutoff wavelength (meters per cycle) a = longer dimension of the waveguide cross section (meter)

Group and Phase Velocity

- Phase velocity is the rate at which the wave *appears* to move along the wall of the guide.
- The phase velocity is always greater than the speed of light.
- A phase velocity faster than the speed of light is possible because it is not really the velocity of anything.
- Phase velocity is used when calculating the wavelength in a guide, but the group velocity is used to determine the length of time it takes for a signal to move from one end to the other.

$$v_{p} = \frac{c}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{c}}\right)^{2}}} = \frac{c}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}}$$

Group Velocity

- The actual speed at which a signal travels down a waveguide is called the **group velocity**, and is less than the speed of light.
- For a rectangular guide, group velocity is given by the formula:

$$v_g = c_{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}} = c_{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$$

• In the dominant mode:
$$v_g = c_1 \sqrt{1 - \left(\frac{\lambda}{2a}\right)^2}$$

• The relationship between the phase velocity & group velocity; 2

$$v_p v_g = c^2$$

OPENCOURSEWARE

END

Innovative.Entrepreneurial.Global

ocw.utm.my