

WATER TREATMENT SKAA 2912

OPENCOURSEWARE

WATER QUALITY PARAMETERS (CHEMICAL – NUTRIENTS, HARDNESS, ALKALINITY)

Dr. Yong Ee Ling

Senior Lecturer Faculty of Civil Engineering Universiti Teknologi Malaysia (eeling@utm.my)

ocw.utm.m

Innovative.Entrepreneurial.Global

NUTRIENTS

- <u>Carbon</u>, <u>Nitrogen and Phosphorus are</u> crucial elements needed by animal and plants to live
- C from CO₂, degradation of organic compounds
- N,P limiting factors

NUTRIENTS

- Nitrogen (N)
 - Present in the form of ammonia or ammonium found in complex mixture of organic compounds such as proteins, amino acids and amino sugars
 - Sources:
 - Element for protein, chlorophyll and biological compounds
 - Decomposition to a simple compound
 Protein → Amino acid → NH₃ → NO₂⁻ → NO₃⁻
 - Animals and human wastes, chemicals (fertilizers)
 - Effects:
 - Poisoning in human and animal babies (baby blue syndrome insufficient of oxygen in the blood due to the substitution of NO₃⁻ & NO₂⁻ in the blood vessel)
 - Excessive algae and aquatic plants breeding
 - Potential formation of nitrosamines and nitrosamides that can cause cancer in various tissue. However, these formation can be inhibited by the consumption of Vitamin C.
 - MCL: Total nitrate-N and nitrite-N <10 mg/L

NUTRIENTS

- Phosphorus (P)
 - An essential requirement for the growth of algae and other biological organisms
 - In the form of orthophosphates (PO_4^{3-} , HPO_4^{2-} , $H_2PO_4^{-}$, H_3PO_4), condensed phosphate and organic phosphate
 - Sources:
 - Readily present in soil
 - Fertilizers
 - Human wastes (organic phosphates)
 - Domestic wastes (element in detergent)
 - Effects:
 - Algae blooms
 - > 0.2 mg/L interfere the coagulation process in water treatment plant

- Definition: A measure of "multivalent" cations in water such as Ca²⁺, Mg²⁺, Fe²⁺ and Mn³⁺
- Due to Ca²⁺ and Mg²⁺ in water and is expressed as an equivalent concentration as calcium carbonate (Total Hardness = Ca²⁺ + Mg²⁺)
- Source:
 - Dissolved from rocks and soils (natural mineral on earth) due to bacterial activity (release as CO₂)

Rain				
TOPSOIL	CO ₂ release due to intense bacterial activity → H_2CO_3 Limestone (CaCO ₃) + H_2CO_3 → Ca(HCO ₃) ₂			
SUBSOIL	Lesser bacteria activity – CO_2 release \rightarrow H ₂ CO ₃ Limestone (CaCO ₃) + H ₂ CO ₃ \rightarrow Ca(HCO ₃) ₂			
ζ	LIMESTONE			
CAVE	CaCO ₃ + H ₂ CO ₃ → Ca(HCO ₃) ₂ MgCO ₃ + H ₂ CO ₃ → Mg(HCO ₃) ₂			

- Effects:
 - Excessive soap usage
 - Precipitate formation in hardware:

Affect cleaning (e.g. laundry (rough and scratchy clothes), dishwashing (spots on glasses and dishes), shower (film build up on bathtub, faucets, sink; sticky and dull feeling on hair))

- Precipitate formation in pipe

Temperature & pH : Hard water build up scales in pipe and cause low water pressure

– Water taste bitter (CaCO₃)

Contribution of other ions to water hardness is always < 1 mg/L – insignificant

- Characterization of water hardness
 - Soft water: $< 75 \text{ mg/L CaCO}_3$
 - Moderately hard water: 75-150 mg/L CaCO₃
 - Hard water: 150-300 mg/L CaCO₃
 - Very hard water: >300 mg/L CaCO₃
- Types of water hardness

(Total Hardness = Carbonate Hardness + Non-carbonate Hardness)

- Carbonate hardness
- Non-carbonate hardness

Example:

Calcium	=	29.0	mg/L
Magnesium	=	16.4	mg/L
Sodium	=	23.0	mg/L
Potassium	=	17.5	mg/L
Bicarbonate (as HCO ₃ -)	=	171.0	mg/L
Sulphate	=	36.0	mg/L
Chloride	=	24.0	mg/L

- a) Convert the above concentrations from mg/L to meq/L,
- b) What is the hypothetical combination?
- c) Find the water hardness in terms of mg/L as $CaCO_3$

- Definition:
 - The measure of ions in water to neutralize acid
 - A measure of its capability to neutralize acid
 - The quantity of strong acid required to titrate the solution to pH near 4.7
- In natural water, alkalinity is due to the salts of weak acids (bicarbonate (HCO₃⁻), carbonate (CO₃²⁻) and hydroxide (OH⁻) ions)
- Sources:
 - Mineral dissolved in water and air
 - Human activities such as detergent (in wastewater), fertilizers, pesticides, etc
- Effects:
 - Non-pleasant taste
 - Reaction between alkaline constituent and cation (positive ion) produces precipitation in pipe

• In water hardness section, we learnt that

 Bacteria activity release CO₂ which dissolved in water as carbonic acid, H₂CO₃ (pH 4.7)

pKa 6.35: H_2CO_3 and HCO_3^- are at equilibrium

 $H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$

$$K_1 = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}$$

pKa 10.33: HCO3- and CO32- are at equilibrium

$$HCO_{3}^{-} \Leftrightarrow H^{+} + CO_{3}^{2-}$$
$$K_{2} = \frac{[H^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]}$$

• The specific concentration of each species can be computed when each fraction of the species is determined

 $C_{T} = [H_{2}CO_{3}] + [HCO_{3}^{-}] + [CO_{3}^{2-}]$

$$\alpha_{H_2CO_3} = \alpha_0 = \frac{[H_2CO_3]}{C_T} = \frac{[H^+]^2}{[H^+]^2 + K_1[H^+] + K_1K_2}$$

$$\alpha_{HCO_{\overline{3}}} = \alpha_1 = \frac{[HCO_{\overline{3}}]}{C_T} = \frac{[H^+]K_1}{[H^+]^2 + K_1[H^+] + K_1K_2}$$

$$\alpha_{CO_3^{2-}} = \alpha_2 = \frac{[CO_3^{2-}]}{C_T} = \frac{K_1K_2}{[H^+]^2 + K_1[H^+] + K_1K_2}$$

- We know that,
 - Alkalinity is the amount of strong acid needed to titrate the solution to pH near 4.7
 - Major alkalinity constituents include HCO₃⁻, CO₃²⁻ and OH⁻
 - For acids & bases, one equivalent is one mole of H⁺
 - Therefore,

$$[ALK] meq/L = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}] - [H^{+}]$$

• The concentration of carbonate and bicarbonate ions can be calculated if the pH and total alkalinity is known.

$$[ALK] meq/L = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}] - [H^{+}]$$

$$K_2 = \frac{[H^+][CO_3^{2-}]}{[HCO_3^{-}]}$$

$$K_w = [H^+][OH^-] = 10^{-14} @ 25^{\circ}C$$

 $H_2O \Leftrightarrow H^+ + OH^-$

• The concentration of carbonate and bicarbonate ions can be calculated if the pH and total alkalinity is known.

 $[ALK] meq/L = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}] - [H^{+}]$

$$[HCO_{3}^{-}] = C_{T}\alpha_{1} \qquad [CO_{3}^{2-}] = C_{T}\alpha_{2}$$

[ALK] meq/L = C_T(
$$\alpha_1 + 2\alpha_2$$
) + $\left(\frac{K_w}{[H^+]}\right) - [H^+]$

ALKALINITY VS HARDNESS

• When alkalinity < total hardness

Carbonate hardness (mg/L) = alkalinity (mg/L)

When alkalinity ≥ total hardness
 Carbonate hardness (in mg/L) = total hardness (in mg/L)

REFERENCES

- American Water Works Association (2011). Water Quality and Treatment: A Handbook on Drinking Water 6th Edition, James K. Edzwald (Ed.), McGraw-Hill: USA
- Benjamin, M.M. (2002). *Water Chemistry,* McGraw-Hill: Singapore
- Sawyer, C.N., McCarty, P.L. & Parkin, G.F. (1994). *Chemistry for Environmental Engineering,* McGraw-Hill: Singapore