WATER TREATMENT

SKAA 2912
WATER QUALITY PARAMETERS
(CHEMICAL - NUTRIENTS, HARDNESS, ALKALINITY)

Dr. Yong Ee Ling
Senior Lecturer
Faculty of Civil Engineering
Universiti Teknologi Malaysia
(eeling@utm.my)

NUTRIENTS

- Carbon, Nitrogen and Phosphorus are crucial elements needed by animal and plants to live
- C - from CO_{2}, degradation of organic compounds
- N,P - limiting factors

NUTRIENTS

- Nitrogen (N)
- Present in the form of ammonia or ammonium found in complex mixture of organic compounds such as proteins, amino acids and amino sugars
- Sources:
- Element for protein, chlorophyll and biological compounds
- Decomposition to a simple compound Protein \rightarrow Amino acid $\rightarrow \mathrm{NH}_{3} \rightarrow \mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{3}^{-}$
- Animals and human wastes, chemicals (fertilizers)
- Effects:
- Poisoning in human and animal babies (baby blue syndrome - insufficient of oxygen in the blood due to the substitution of $\mathrm{NO}_{3}^{-} \& \mathrm{NO}_{2}^{-}$in the blood vessel)
- Excessive algae and aquatic plants breeding
- Potential formation of nitrosamines and nitrosamides that can cause cancer in various tissue. However, these formation can be inhibited by the consumption of Vitamin C.
- MCL: Total nitrate-N and nitrite-N < $10 \mathrm{mg} / \mathrm{L}$

NUTRIENTS

- Phosphorus (P)
- An essential requirement for the growth of algae and other biological organisms
- In the form of orthophosphates $\left(\mathrm{PO}_{4}{ }^{3-}, \mathrm{HPO}_{4}{ }^{2-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right.$, $\mathrm{H}_{3} \mathrm{PO}_{4}$), condensed phosphate and organic phosphate
- Sources:
- Readily present in soil
- Fertilizers
- Human wastes (organic phosphates)
- Domestic wastes (element in detergent)
- Effects:
- Algae blooms
- > $0.2 \mathrm{mg} / \mathrm{L}$ - interfere the coagulation process in water treatment plant

HARDNESS

- Definition: A measure of "multivalent" cations in water such as $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}$ and Mn^{3+}
- Due to Ca^{2+} and Mg^{2+} in water and is expressed as an equivalent concentration as calcium carbonate (Total Hardness $=\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}$)
- Source:
- Dissolved from rocks and soils (natural mineral on earth) due to bacterial activity (release as CO_{2})

Rain	
TOPSOIL	CO_{2} release due to intense bacterial activity $\rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ Limestone $\left(\mathrm{CaCO}_{3}\right)+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
SUBSOIL	Lesser bacteria activity $-\mathrm{CO}_{2}$ release $\rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ Limestone $\left(\mathrm{CaCO}_{3}\right)+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
	LIMESTONE $\begin{aligned} & \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \\ & \mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2} \end{aligned}$

HARDNESS

- Effects:
- Excessive soap usage
- Precipitate formation in hardware:

Affect cleaning (e.g. laundry (rough and scratchy clothes), dishwashing (spots on glasses and dishes), shower (film build up on bathtub, faucets, sink; sticky and dull feeling on hair))

- Precipitate formation in pipe
\uparrow Temperature \& pH: Hard water build up scales in pipe and cause low water pressure
- Water taste bitter $\left(\mathrm{CaCO}_{3}\right)$

Contribution of other ions to water hardness is always $<1 \mathrm{mg} / \mathrm{L}-$ insignificant

HARDNESS

- Characterization of water hardness
- Soft water: < $75 \mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}$
- Moderately hard water: $75-150 \mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}$
- Hard water: $150-300 \mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}$
- Very hard water: >300 mg/L CaCO_{3}
- Types of water hardness
(Total Hardness = Carbonate Hardness + Non-carbonate Hardness)
- Carbonate hardness
- Non-carbonate hardness

HARDNESS

Example:

Calcium	$=$	29.0	mg / L
Magnesium	$=$	16.4	mg / L
Sodium	$=$	23.0	mg / L
Potassium	$=$	17.5	mg / L
Bicarbonate $\left(\right.$ as $\left.\mathrm{HCO}_{3}{ }^{-}\right)$	$=$	171.0	mg / L
Sulphate	$=$	36.0	mg / L
Chloride	$=$	24.0	mg / L

a) Convert the above concentrations from mg / L to $\mathrm{meq} / \mathrm{L}$,
b) What is the hypothetical combination?
c) Find the water hardness in terms of mg / L as CaCO_{3}

ALKALINITY

- Definition:
- The measure of ions in water to neutralize acid
- A measure of its capability to neutralize acid
- The quantity of strong acid required to titrate the solution to pH near 4.7
- In natural water, alkalinity is due to the salts of weak acids (bicarbonate $\left(\mathrm{HCO}_{3}^{-}\right)$, carbonate $\left(\mathrm{CO}_{3}^{2-}\right)$ and hydroxide $\left(\mathrm{OH}^{-}\right)$ions)
- Sources:
- Mineral dissolved in water and air
- Human activities such as detergent (in wastewater), fertilizers, pesticides, etc
- Effects:
- Non-pleasant taste
- Reaction between alkaline constituent and cation (positive ion) produces precipitation in pipe

ALKALINITY

- In water hardness section, we learnt that
- Bacteria activity release CO_{2} which dissolved in water as carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{pH} 4.7)$
pKa 6.35: $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{HCO}_{3}{ }^{-}$are at equilibrium

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{CO}_{3} \Leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \\
\mathrm{K}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}
\end{gathered}
$$

pKa 10.33: $\mathrm{HCO} 3-$ and $\mathrm{CO}_{3}{ }^{2-}$ are at equilibrium

$$
\begin{aligned}
& \mathrm{HCO}_{3}^{-} \Leftrightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{K}_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}
\end{aligned}
$$

ALKALINITY

- The specific concentration of each species can be computed when each fraction of the species is determined

$$
\begin{gathered}
\mathrm{C}_{\mathrm{T}}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right] \\
\alpha_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\alpha_{0}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\mathrm{C}_{\mathrm{T}}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}} \\
\alpha_{\mathrm{HCO}_{3}^{-}}=\alpha_{1}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\mathrm{C}_{\mathrm{T}}}=\frac{\left[\mathrm{H}^{+}\right] \mathrm{K}_{1}}{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}} \\
\alpha_{\mathrm{CO}_{3}^{2-}}=\alpha_{2}=\frac{\left[\mathrm{CO}_{3}^{2-}\right]}{\mathrm{C}_{\mathrm{T}}}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}}
\end{gathered}
$$

ALKALINITY

- We know that,
- Alkalinity is the amount of strong acid needed to titrate the solution to pH near 4.7
- Major alkalinity constituents include $\mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$ and OH^{-}
- For acids \& bases, one equivalent is one mole of H^{+}
- Therefore,

$$
[\mathrm{ALK}] \mathrm{meq} / \mathrm{L}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]
$$

ALKALINITY

- The concentration of carbonate and bicarbonate ions can be calculated if the pH and total alkalinity is known.

$$
\begin{aligned}
& {[\mathrm{ALK}] \mathrm{meq} / \mathrm{L}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]} \\
& \mathrm{K}_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]} \quad \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} @ 25^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\left[\mathrm{HCO}_{3}^{-}\right]=\frac{\left([\mathrm{ALK}]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}+\left[\mathrm{H}^{+}\right]\right.}{\left(1+\frac{2 \mathrm{~K}_{2}}{\left[\mathrm{H}^{+}\right]}\right)}
$$

$$
\left[\mathrm{CO}_{3}^{2-}\right]=\frac{\left([A L K]-\frac{K_{w}}{\left[H^{+}\right]}+\left[H^{+}\right]\right)}{\left(1+\frac{\left[H^{+}\right]}{2 K_{2}}\right)}
$$

ALKALINITY

- The concentration of carbonate and bicarbonate ions can be calculated if the pH and total alkalinity is known.

$$
[\mathrm{ALK}] \mathrm{meq} / \mathrm{L}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]
$$

$$
\left[\mathrm{HCO}_{3}^{-}\right]=\mathrm{C}_{\mathrm{T}} \alpha_{1} \quad\left[\mathrm{CO}_{3}^{2-}\right]=\mathrm{C}_{\mathrm{T}} \alpha_{2}
$$

$$
[\mathrm{ALK}] \mathrm{meq} / \mathrm{L}=\mathrm{C}_{\mathrm{T}}\left(\alpha_{1}+2 \alpha_{2}\right)+\left(\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}\right)-\left[\mathrm{H}^{+}\right]
$$

ALKALINITY VS HARDNESS

- When alkalinity < total hardness

Carbonate hardness (mg/L) = alkalinity (mg/L)

- When alkalinity \geq total hardness

Carbonate hardness (in mg/L) = total hardness (in mg/L)

REFERENCES

- American Water Works Association (2011). Water Quality and Treatment: A Handbook on Drinking Water $6^{\text {th }}$ Edition, James K. Edzwald (Ed.), McGraw-Hill: USA
- Benjamin, M.M. (2002). Water Chemistry, McGraw-Hill: Singapore
- Sawyer, C.N., McCarty, P.L. \& Parkin, G.F. (1994). Chemistry for Environmental Engineering, McGraw-Hill: Singapore

