

WATER TREATMENT SKAA 2912

OPENCOURSEWARE

WATER QUALITY PARAMETERS (CHEMICAL – ORGANIC & INORGANIC)

Dr. Yong Ee Ling

Senior Lecturer Faculty of Civil Engineering Universiti Teknologi Malaysia (eeling@utm.my)

ocw.utm.mv

Innovative.Entrepreneurial.Global

- All organic compounds contain carbon in combination with one or more elements
- Sources:
 - Nature:
 - Breakdown of naturally occurring materials
 - The greatest source are from fibers, vegetable oils, animal oils and fats, cellulose, starch, sugar
 - Serve as precursors for disinfectant-by-products (DBPs) formation
 - Synthetic:
 - A wide variety of compounds and materials prepared by manufacturing processes (man-made chemicals from domestic and commercial activities)
 - Fermentation:
 - Alcohols, acetone, glycerol, antibiotics, acids

- General effects
 - Deplete dissolved oxygen in water → destroy aquatic life and damage ecosystem
 - Some can cause cancer (e.g. DBPs carcinogenic compounds formed when chlorine is employed as a disinfectant in water and wastewater treatment plants)

- Man-made organic compounds:-
 - Volatile organic compounds
 - Pesticides
 - Emerging drinking water contaminants
 - Chemicals in treatment additives, linings and coatings

- Volatile organic compounds (VOCs)
 - Characteristics
 - Evaporative
 - Slightly soluble in water
 - Easily volatilize from hot water (other exposure route besides ingestion: inhalation)
 - Lipophilic (can enter via skin absorption \rightarrow enter brain from blood)
 - Effects
 - Dizziness, nausea and cardiac depression
 - Toxic to liver and kidney after chronic exposure and some can cause cancer
 - Divided into three broad groups:
 - Petroleum products (aromatic compounds in fuel oil and gasoline tanks)
 - Halogenated VOCs (used as solvents and degreasers in industrial and commercial)
 - Chlorinated organic DBPs, particularly THMs

- Disinfectant by-products
 - Organic DBPs are formed through the reaction of disinfectants with organic matter in source waters
 - Regulated disinfectants are:
 - Chlorine

Possess mutagenic potential to bacteria and mamalian cells; < 4 mg/L $\,$

 Chlorine dioxide: < 0.8 mg/L (dissociate into Chlorite (CIO⁻) and Chlorate (CIO3⁻))

<u>Chlorite (CIO⁻):</u> Decrease red blood cells and growth rate; delay neurodevelopment (< 1.0 mg/L)

Chlorate (CIO3-): Increase thyroid and pancreatic tumor

• Chloramines

Affect dialysis patient by denaturing the red blood cells; < 4 mg/L $\,$

- Disinfectant by-products
 - Regulated DBPs are:
 - Trihalomethanes (THMs): human carcinogen; volatile compounds that can be exposed during showering and other household uses of water
 - Haloacetic acids (HAAs): human carcinogen, develop abnormal sperm, decrease sperm count and motility, liver toxicity and tumors,
 - Bromate: human carcinogen
 - Nitrosamines: Nitrisodimethylamine (NDMA) human carcinogen

- Pesticides
 - Include insecticides, herbicides, nematicides, rodenticides and fungicides
 - Characteristics
 - Water soluble
 - Canbind tightly to organic material in soil and particles
 - Mostly are chlorinated
 - Effects
 - Short-term exposure: liver and kidney damage, major interference with nervous, interfere with immune and reproductive system functions; less severe would be dizziness, nausea and fatigue
 - Long-term exposure: risk of birth defects and cancer risk

- Emerging drinking water contaminants
 - Found in the range of ng/L to µg/L in finished drinking water
 - Endocrine disruptors
 - Affect endocrine systems (thyroid and steroid hormones) - interfere with the development and reproduction in wildlife
 - Enter via wastewater treatment plants or agricultural runoff
 - Pharmaceuticals and personal care products
 - Enter via wastewater treatment plants

- Emerging drinking water contaminants
 - Perfluorinated chemicals
 - Highly water soluble
 - Used to produce water- and stain-resistant products (e.g cookware, clothing, fire fighting foam)
 - Do not degrade in the environment
 - Cause adverse effects on liver and immune system; likely to be human carcinogens
 - Nanoparticles
 - Used in consumer products (washing liquidss, clothing, washing machines, drug delivery systems for pharmaceuticals)

- Chemicals in Treatment Additives, Linings and Coatings
 - Acrylamide
 - Sources: polyacrylamide flocculants; also used as grouting agents in the construction of drinking water reservoir
 - Effects: toxic effects to central nervous systems particularly damaging the nerves in arms or legs; carcinogenic
 - Epichlorohydrin
 - Sources: used as flocculants in drinking water treatment plants and as a solvent for lacquers to coat the interiors of water tanks and pipe
 - Effects: carcinogenic
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - Sources: leaching of tar or asphalt linings of distribution pipelines but their solubility is limited
 - Effects: toxicity vary and can cause cancer

- When placed in water, inorganic compounds dissociate into electrically charged atoms referred to as ions
- All atoms linked in ionic bond
- Can be classified into two:
 - Metal
 - Toxic (As³⁺, As⁵⁺, Ba²⁺, Cd²⁺, Pb²⁺, Hg²⁺) Source: Human activities (e.g. mining and industries) Effects: Dangerous diseases such as cancer, abortion and deformation of new born babies; stored up in food chain
 - Non-toxic (Ca²⁺, Mn²⁺, Na⁺, Fe²⁺, Mg²⁺, Al³⁺, Cu²⁺, Zn²⁺, SO₄²⁻) Source: Mineral available in the natural environment Effects: Color, odor, taste and turbidity; Deteriorate health at high concentration
 - Non-metal (halogens, nutrients and hardness)
 - Source: Mineral
 - Effects: Diseases (NO₂^{-:} baby blue syndrome); aesthetic (Si⁴⁺: turbidity); F^{-:} not good for health if it is taken at high concentration, < 1 mg/L good for the growth of children's teeth but concentration higher than 1 mg/L can cause color on teeth and problem in bone growth

- Arsenic (As³⁺, As⁵⁺)
 - Arsenic present in organic arsenical forms in fish and shellfish much less toxic than inorganic arsenic. Daily intake is 50 µg and only 1-20 µg is in inorganic form
 - Effects of chronic exposure to human: systemic toxicity (dermatological toxicity: hyperpigmentation, keratoses; peripheral vascular disease: blackfoot disease; increase the risk of cardiovascular disease; diabetes; gastroenterological disease) and cancer
 - Lethal dose in drinking water: 1 to 4 mg/kg (USEPA, 2000)
 - Minimum contaminant level (MCL) in drinking water: 10 µg/L (USEPA, 2001)

ocw.utm.m

- Cadmium (Cd²⁺)
 - Enter tap water by corrosion of galvanized pipe and solder used in hot water heaters
 - Can cause kidney dysfunction, hypertension, anemia and altered liver functions; human carcinogens
 - MCL: 5 μg/L (USEPA, 1985, 1991)

- Lead (Pb²⁺)
 - Sources: Corrosion of lead pipe and lead solder, especially in areas with soft or acidic water
 - More toxic in children than adults (more readily absorb in young children than older children and young adults)
 - Effects:
 - Accumulates in bones
 - Impairs neurodevelopment (delay in mental and physical development, decrease in intelligence)

- Mercury (Hg²⁺)
 - Sources: burning of fossil fuels, incineration of products containing mercury, leaching of organic mercury from antifungal outdoor paints
 - Inorganic mercury is poorly absorbed by human but if in the form of methylmercury, it is readily absorbed
 - Methylmercury → neurotoxic: can result in mental and motor dysfunctions or death. For pregnant women, can cross placenta barrier

REFERENCES

- American Water Works Association (2011). *Water Quality and Treatment: A Handbook on Drinking Water 6th Edition*, James K. Edzwald (Ed.), McGraw-Hill: USA
- Benjamin, M.M. (2002). Water Chemistry, McGraw-Hill: Singapore
- Sawyer, C.N., McCarty, P.L. & Parkin, G.F. (1994). *Chemistry for Environmental Engineering,* McGraw-Hill: Singapore
- USEPA (1985). National Primary and Secondary Drinking Water Regulations; Synthetic Organic Chemicals, Inorganic Chemicals and Microorganisms. *Federal Register*, 50: 46936-47022.
- USEPA (1991). National Primary and Secondary Drinking Water Regulations; Synthetic Organic Chemicals and Inorganic Chemicals; Monitoring for Unregulated Contaminants; National Primary Drinking Water Regulations Implementation; National Secondary Drikning Water Regulations. *Federal Register*, 56: 3526-3599.
- USEPA (2000). National Primary Drinking Water Regulations: Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. *Federal Register*, 65: 3887-38983.
- USEPA (2001). National Primary Drinking Water Regulations: Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. *Federal Register*, 66: 6957-7066.