

WATER TREATMENT SKAA 2912

OPENCOURSEWARE

WATER QUALITY PARAMETERS (Measurement Units)

Dr. Yong Ee Ling

Senior Lecturer Faculty of Civil Engineering Universiti Teknologi Malaysia (eeling@utm.my)

ocw.utm.my

Innovative.Entrepreneurial.Global

Introduction

- The water quality parameters can be divided into three categories:-
 - Physical parameter
 - Chemical parameter
 - Biological parameter

Physical Parameters

- Solids
- Turbidity
- Color
- Absorption/Transmittance
- Taste and Odor
- Temperature
- Conductivity

Chemical Parameters

- pH
- Alkalinity
- Hardness
- Organic constituents
- Inorganic constituents
 ➢Non-metallic
 ➢Metallic
- Disinfection by-products

Biological Parameters

• Pathogenic organisms

- Bacteria
- Viruses
- Protozoa
- Cyanobacteria

Indicator organisms

- Coliform bacteria
- Enterococcus
- Coliphage
- Other fecal indicator organisms
- Heterotrophic bacteria

Introduction

 Water quality (WQ) parameters are used as a gauge to develop good potable drinking water, where the quality of a tested water is illustrated
 QUALITATIVELY and QUANTITATIVELY.

Measurement Units (Concentrations)

- Concentrations are normally used to quantitatively measure physical or chemical parameters
- Two types of measurement units are employed:
 - Liquids:

Mass/Volume (e.g. mg/L, µg/L, mol/L or Molarity (M))

- Solids:

Mass/Mass units (e.g. g/g, mg/kg, µg/kg)

Measurement Units (Unit conversion)

• Conversion mg/L \rightarrow parts per million (ppm)

 $1\frac{\text{mg}}{\text{L}} = \frac{1 \text{ mg}}{1000 \text{ g solution}} = \frac{1 \text{ mg}}{10^6 \text{ mg solution}} = 1 \text{ ppm}$

- What is the unit for:
 - Parts per billion (ppb)?
 - Parts per trillion (ppt)?

- Equivalents per liter (eq/L) or milliequivalents per liter (meq/L)
 - Used for measurement which involves the combination of several different elements
 - Three cases use eq/L:
 - a. salt ions: one equivalent is one mole of electric charge (without regard to sign)
 - b. oxidation-reduction reactions: one equivalent is one mole of electrons (e⁻)
 - c. Acids & bases: one equivalent is one mole of H⁺

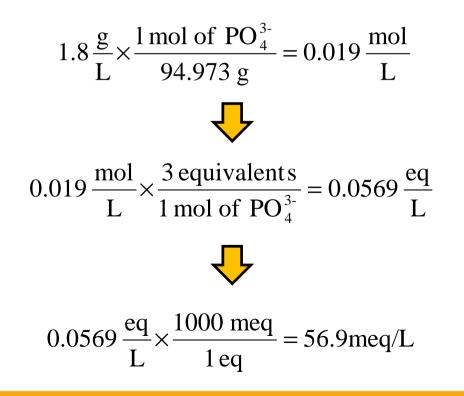
- Converting mg/L to meq/L
 - Based on equation

$$\frac{\text{meq}}{\text{L}} = \text{concentration}\left(\frac{\text{mg}}{\text{L}}\right) \times \frac{1}{\text{Equivalent weight}}$$

where

Equivalent weight =
$$\frac{\text{Atomic or Molecular Weight}}{|\text{Valence}|}$$

To convert mg/L → meq/L, 3 steps conversion involved:-



Example:

Convert 1.8 g/L of phosphate ion (PO₄³⁻) into meq/L. (MW PO₄³⁻ = 94.973 g)

Practice (Let's do it the reverse way!)

Convert 4 meq/mL of calcium chloride dihydrate into g/L (CaCl₂.2H₂O: MW = 147)

Ans: 294 g/L

Measurement Units (Interconversion)

- Species concentrations represented by a single element
- Only applicable for species that can be interconverted chemically or biologically
- Example: Nitrogen, phosphorus, sulfur

Measurement Units (Interconversion)

Example:

A water sample contains 1.4 mg $NO_2^{-}-N/L$.

a.What is the concentration of nitrite ion in the water sample? Ans: 4.6 mg NO₂⁻/L

a. If all nitrite ion is converted to nitrate, calculate the concentration of nitrate ion in the water sample Ans: 6.2 mg NO₃-/L

References

- American Water Works Association (2011). Water Quality and Treatment: A Handbook on Drinking Water 6th Edition, James K. Edzwald (Ed.), McGraw-Hill: USA
- Benjamin, M.M. (2002). *Water Chemistry,* McGraw-Hill: Singapore
- Metcalf & Eddy (2003). Wastewater Engineering: Treatment and Reuse 4th Edition, McGraw-Hill: USA
- Sawyer, C.N., McCarty, P.L. & Parkin, G.F. (1994). *Chemistry for Environmental Engineering,* McGraw-Hill: Singapore