

SEE 2523 Theory Electromagnetic

Chapter 5 Electrodynamics Fields

You Kok Yeow

ocw.utm.my

Innovative.Entrepreneurial.Global

Contents

1. Electromagnetic fields

- **Electromagnetic induction**
- Faraday's law
- Lenz's law
- 2. Plane Wave
 - **Define Plane Wave**
- **3. Wave Propagation**
 - **Time-Varying Maxwell's Equations**
 - **Wave Equations**
- **4.** Wave Propagation in Mediums

Wave Propagate in Lossless, Lossy and Conducting Mediums

Michael Faraday (1791-1867)

1. Electrostatic is study of static electric charges.

Static charges produce electric field (Capacitor)

2. Magnetostatic is a study of motion electric charges with uniform velocity.

Motion charges produce current

Steady current-carrying conductor produce magnetic field (Inductor)

Steady current-carrying conductor in magnetic field produce motion force (Galvanometer, Electric motor)

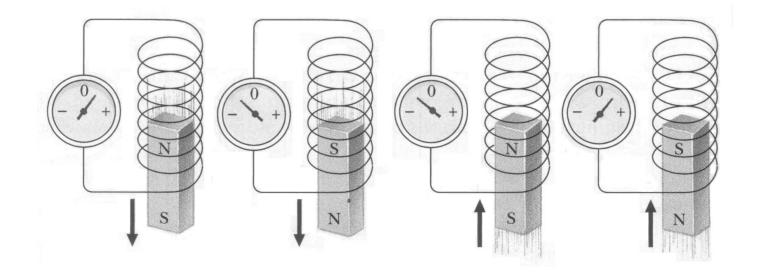
3. Electromagnetic is a study of motion electric charges with acceleration.

Relative motion between conductors and a magnetic field produce current. (Electric generator or Dynamo, Transformer)

Electromagnetic Field

ocw.utm.my

- 1. Electromagnet is a temporary magnet, which its magnetic fields is produced by electric current.
- 2. Electromagnetic induction is the process of producing electromotive force or current in conductor due to relative motion between conductors and a magnetic field.



3. Electromotive force (EMF) is a potential difference given to the changes by a battery (in volts).

Electromagnetic Induction (1)

1. There are two laws of electromagnetic induction.

OPENCOURSEWARE

Faraday's law states the relationship between induced current and the change of flux.

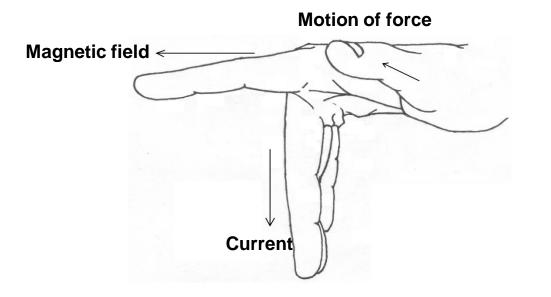
Lenz's law states the direction of induced current.

Faraday's law states that the magnitude of the induced electromotive force (EMF) in a closed circuit or conductor is proportional to the rate of change of the number of lines of magnetic force linking it.

Lenz's law states that the direction of the induced current is such as to oppose the change causing it

$$Electromotive \ force (EMF) = -\frac{d\Phi}{dt}$$

Electromagnetic Induction (2)



Fleming's right-hand rule

Electromagnetic Induction (Derivation using Maxwell's Equation)

By using Maxwell's equation

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Integrating both sides respect to surface

OPENCOURSEWARE

$$\int_{S} \left(\vec{\nabla} \times \vec{E} \right) \cdot d\vec{S} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S}$$

Reduce the double integral to single integral using Stoke's Theorem

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi}{dt}$$

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S}$$

Electromotive force
$$(EMF) = -\frac{d\Phi}{dt}$$

$$V(EMF) = \oint \vec{E} \cdot d\vec{l}$$

Innovative.Entrepreneurial.Global

Question (1)

A circular loop of *N* turns of conducting wire lies in the *xy*-plane with its center at the origin of a magnetic field specified by $\vec{B} = \hat{z}B_o \cos(\pi r/2b)\sin\omega t$ where *b* is the radius of the loop and ω is the angular frequency. Determine the emf, *V* induced in the loop.

Solution Using $\int x\cos(ax)dx = \frac{1}{a^2}[\cos(ax) + ax\sin(ax)] + C$

The magnetic flux linking each turn of the circular loop is

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S}$$
$$= \int_{0}^{b} \left[\hat{z}B_{o} \cos\left(\frac{\pi r}{2b}\right) \sin \omega t \right] \cdot (\hat{z}2\pi r dr)$$
$$= \frac{8b^{2}}{\pi} \left(\frac{\pi}{2} - 1\right) B_{o} \sin \omega t$$

Since there are N turn, the total flux linkage is

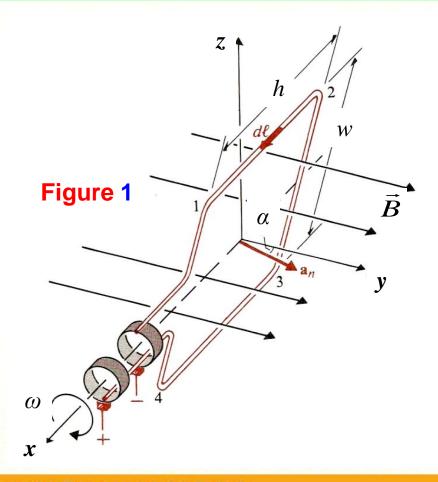
OPENCOURSEWARE

$$V(emf) = -N \frac{d\Phi}{dt}$$
$$= -\frac{8N}{\pi} b^2 \left(\frac{\pi}{2} - 1\right) B_o \omega \cos \omega t \qquad V$$

OPENCOURSEWARE

Question (2)

An *h* by *w* rectangular conducting loop is situated in a changing magnetic field $\vec{B} = \hat{y}B_o \sin \omega t$. The normal of the loop initially makes an angle α with ω as shown in Figure 1. Determine the induced emf, *V* in the loop when the loop is at rest.



Solution

When the loop is at rest.

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S}$$
$$= (\hat{y}B_{o}\sin\omega t) \cdot (\hat{a}_{n}hw)$$

$$= B_o hw \sin \omega t \cos \alpha$$

Therefore

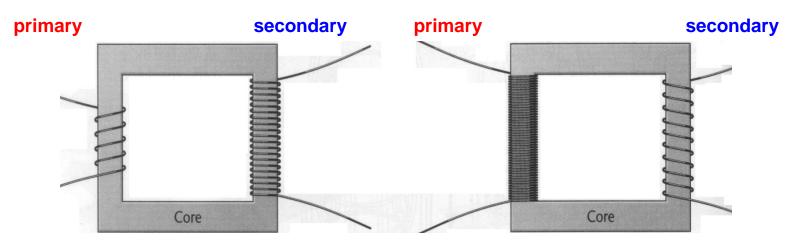
$$V(emf) = -\frac{d\Phi}{dt}$$

 $=-B_ohw\omega\cos\omega t\cos\alpha$

Innovative.Entrepreneurial.Global

Mutual Coupling Induction (Transformer) 1

- 1. For generator, a moving loop with a time-varying area in a static magnetic field.
- **2.** For transformer, a time-varying magnetic field linking a stationary loop.



Step-up Transformer

Step-down Transformer

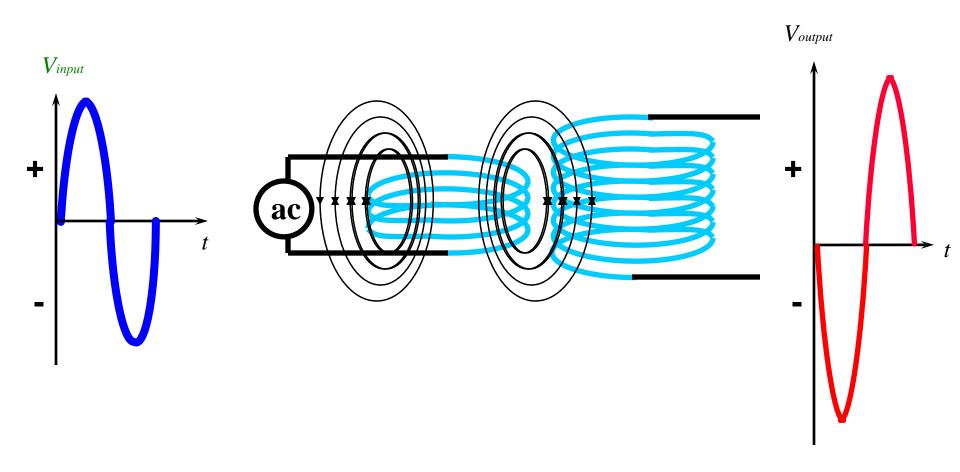
Mutual Coupling Induction (Transformer) 2

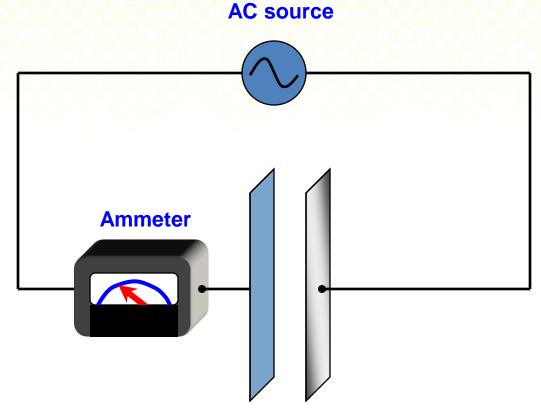
Principle

- a) When the primary coil is connected to source of a.c voltage, the changing current creates a varying magnetic field.
- b) The varying magnetic field is carried through the core to the secondary coil.
- c) In the secondary coil, the varying field induces a varying electromotive force (EMF).
- d) This effect is called mutual inductance

ocw.utm.my

Mutual Coupling Induction (Transformer) 3



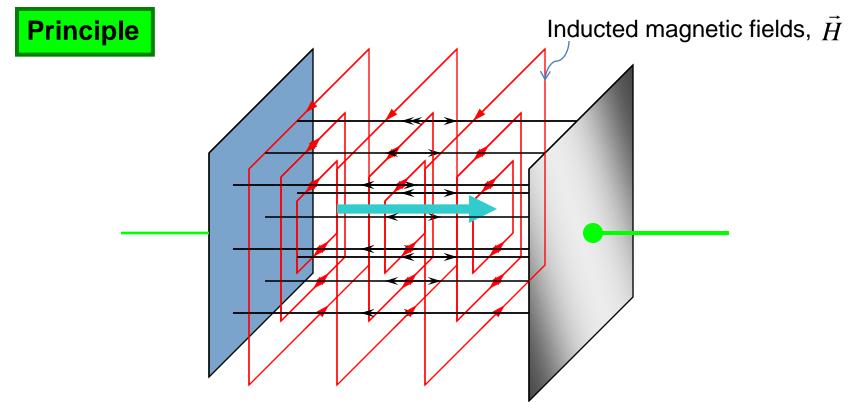


How can the ammeter read any value of current since the capacitor is an open circuit ?

Innovative.Entrepreneurial.Global

ocw.utm.my

Displacement Current Density (2)



This displacement current does not exist in a time-independent system

$$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

ocw.utm.my

Displacement Current Density (3)

Question

Verify that the conduction current in the wire equals the displacement current between the plates of the parallel plate capacitor in the circuit. The voltage source has $V_c = V_o \sin \omega t$

Answer

The conduction current in the wire is given by

$$I_{c} = C \frac{dV_{c}}{dt}$$
$$= CV_{o}\omega\cos\omega t$$

The electric field between the plates

 $\vec{E} = V_c/d$

The displacement flux density

$$\vec{D} = \varepsilon \vec{E}$$

The displacement current is computed from

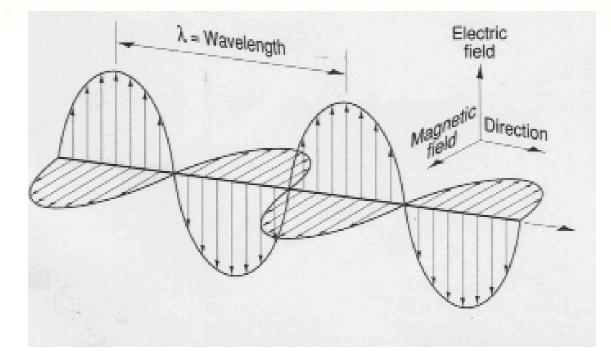
$$I_{d} = \int_{A} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$$
$$= \left(\frac{\varepsilon A}{d}\right) V_{o} \omega \cos \omega t$$
$$= C V_{o} \omega \cos \omega t$$
$$= I_{c}$$

UTTM

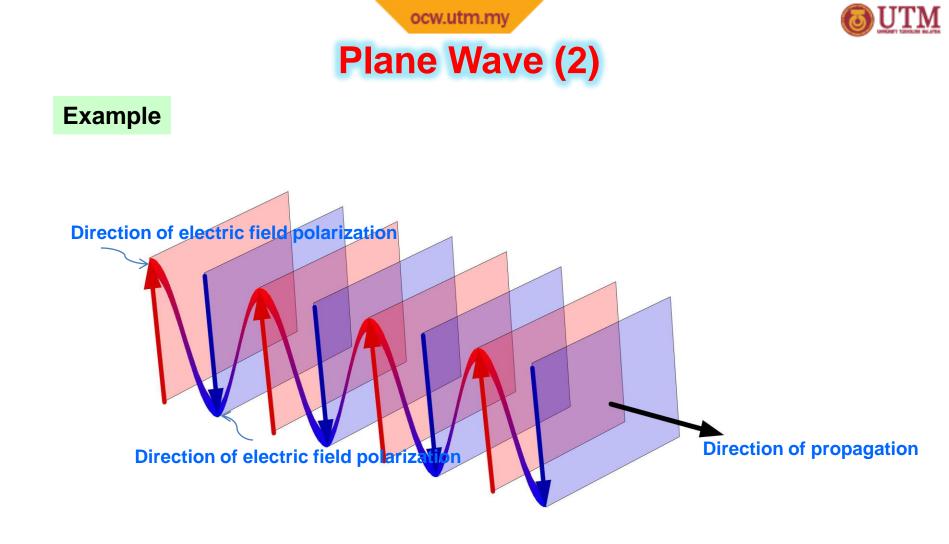
OPENCOURSEWARE

Plane Wave (1)

1. A uniform plane wave is the wave that the electric field, \vec{E} or magnetic field, \vec{H} in same direction, same magnitude and same phase in infinite planes perpendicular to the direction of propagation.

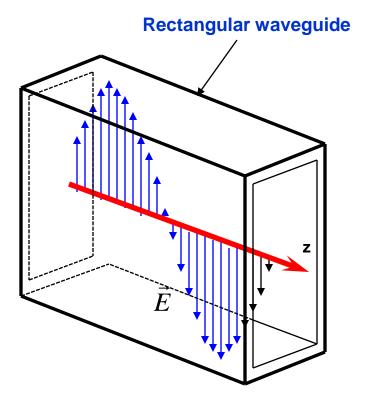


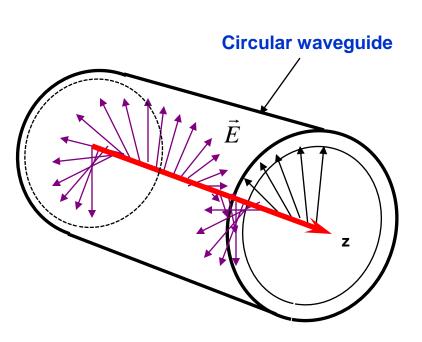
2. A plane wave has no electric field, \vec{E} and magnetic field, \vec{H} components along its direction of propagation



At a particular location z and at the particular time, t, the electric field $\hat{y}E_y$ have the same phase at all points in the transverse plane.

Plane Wave and Polar Wave

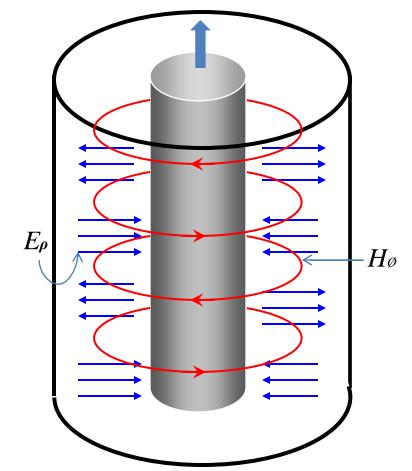




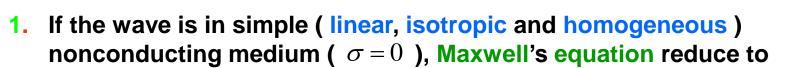
Plane wave

Wave Propagation (Example)

Direction of propagation



Wave Propagate in Coaxial Line



$$\vec{\nabla} \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t} \qquad \vec{\nabla} \cdot \vec{E} = 0$$
$$\vec{\nabla} \times \vec{H} = \varepsilon \frac{\partial \vec{E}}{\partial t} \qquad \vec{\nabla} \cdot \vec{H} = 0$$

- **2.** The first-order differential equations in the two variables \vec{E} and \vec{H} .
- **3.** They can combine to give \vec{E} or \vec{H} alone using second-order equation.

Wave Equations (2)

Example

Using Maxwell's equation

$$\vec{\nabla} \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$$
 (1) $\vec{\nabla} \times \vec{H} = \varepsilon \frac{\partial \vec{E}}{\partial t}$ (2) $\vec{\nabla} \cdot \vec{E} = 0$ (3)

The curl of equation of (1)

$$\vec{\nabla} \times \vec{\nabla} \times \vec{E} = -\mu \frac{\partial}{\partial t} \left(\vec{\nabla} \times \vec{H} \right)$$

Replace equation (2)

$$\vec{\nabla} \times \vec{\nabla} \times \vec{E} = -\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

We know that $\vec{\nabla} \times \vec{\nabla} \times \vec{E} = \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) - \vec{\nabla}^2 \vec{E}$ because of equation (3), thus

$$\vec{\nabla}^2 \vec{E} - \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Homogeneous vector wave equation

1. The wave equation also can written as

$$\vec{\nabla}^2 \vec{E} - k^2 \vec{E} = 0 \tag{1}$$

Assuming an implicit time dependence $e^{j\omega t}$ in the field vectors.

2. Equation (1) also called Helmholtz equation.

3. The k is called the wave number or propagation constant.

$$k = k_o \sqrt{\varepsilon_r}$$

= $\frac{2\pi f}{c} \sqrt{\varepsilon_r}$ and $c = \frac{1}{\sqrt{\varepsilon\mu}}$

where *c* is the velocity of light in free space.

Innovative.Entrepreneurial.Global

Wave Equations (Example)

4. For magnetic intensity domain, \vec{H}

$$\vec{\nabla}^2 \vec{H} - \mu \varepsilon \frac{\partial^2 \vec{H}}{\partial t^2} = 0$$
 or $\vec{\nabla}^2 \vec{H} - \mu_r \varepsilon_r k_o^2 \vec{H} = 0$

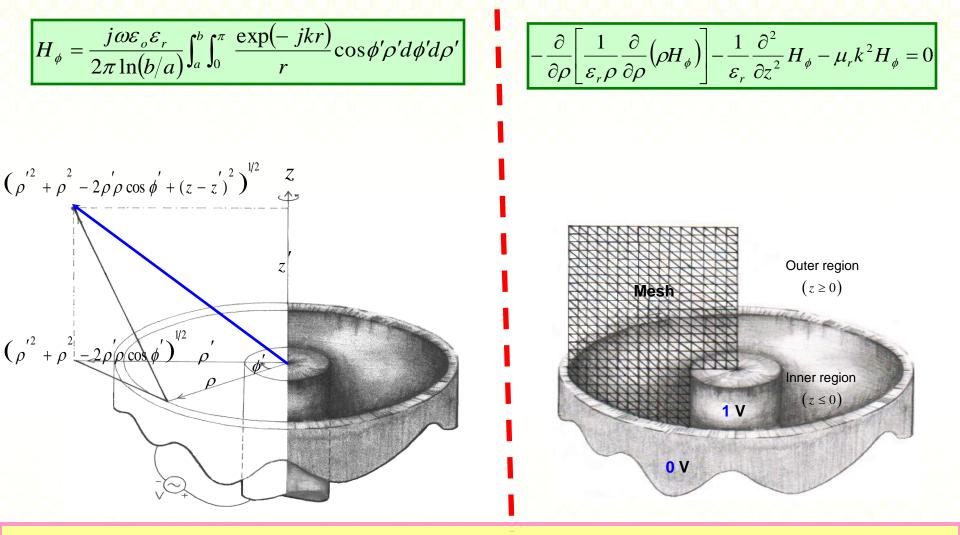
Example:

For coaxial line, \vec{H} field is a function of ρ and z, but independent of ϕ . Therefore, vector wave equation can be simplified to a scalar equation for H_{ϕ}

$$-\frac{\partial}{\partial\rho}\left[\frac{1}{\varepsilon_{r}\rho}\frac{\partial}{\partial\rho}\left(\rho H_{\phi}\right)\right]-\frac{1}{\varepsilon_{r}}\frac{\partial^{2}}{\partial z^{2}}H_{\phi}-\mu_{r}k^{2}H_{\phi}=0$$

OPENCOURSEWARE

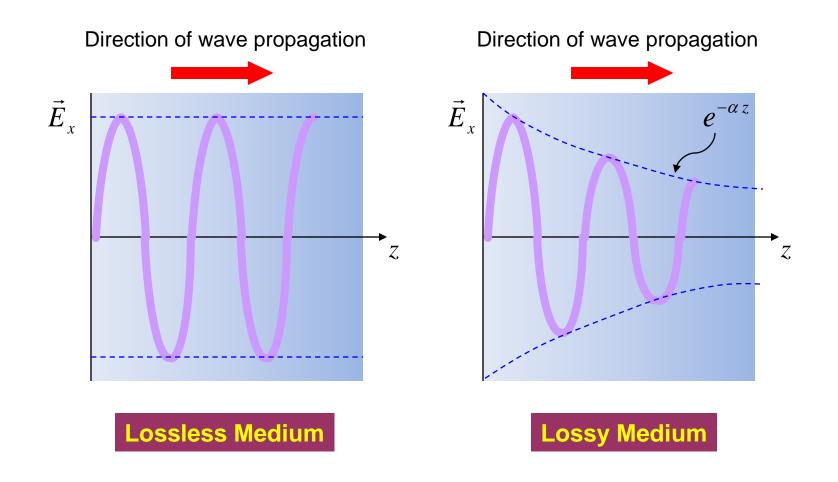
Wave Equations (Example)



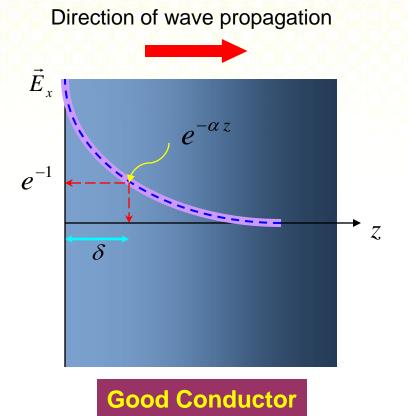
Integral and Differential Solutions for Coaxial Waveguides

Innovative.Entrepreneurial.Global

Plane Wave Propagation in Medium (1)



Plane Wave Propagation in Medium (2)



The fields decrease with penetration, falling to 1/e of their surface values in a distance equal skin depth, δ .

ocw.utm.my

Innovative.Entrepreneurial.Global

Plane Wave Propagation in Medium (3)

1. For a uniform plane wave with an electric field $\vec{E} = \hat{x}E_x$ traveling in the *z*-direction, the wave equation can be reduced as

$$\frac{\partial^2 \vec{E}_x(z)}{\partial z^2} - k^2 \vec{E}_x(z) = 0$$

2. The solution of this wave equation

$$\vec{E}(z) = \hat{x}E_x$$
$$= \hat{x}E_o e^{-kz}$$
$$= \hat{x}E_o e^{-\alpha z} e^{-j\beta z}$$

where α is the attenuation constant of the medium and β is its phase constant

Plane Wave Propagation in Medium (4)

3. The k is called the wave number or propagation constant.

$$k^2 = k_o^2 \varepsilon_r \mu_r$$

or
$$k^2 = k_o^2 \mu_r \left(\varepsilon_r' - j \varepsilon_r'' \right)$$

4. The wave number can also be written in terms of α and β .

$$k^{2} = (\alpha + j\beta)^{2}$$
$$= (\alpha^{2} - \beta^{2}) + j2\alpha\beta$$

5. Thus,

$$\alpha^2 - \beta^2 = k_o^2 \mu_r \varepsilon_r' \tag{1}$$

$$2\alpha\beta = -k_o^2\mu_r\varepsilon_r''$$
 (2)

Plane Wave Propagation in Medium (5)

6. By solving the (1) and (2),

$$\alpha = \sqrt{\frac{k_o^2 \mu_r \varepsilon_r'}{2} \left(\sqrt{1 + \left(\frac{\varepsilon_r''}{\varepsilon_r'}\right)^2} - 1 \right)}$$

$$\beta = \sqrt{\frac{k_o^2 \mu_r \varepsilon_r'}{2} \left(\sqrt{1 + \left(\frac{\varepsilon_r''}{\varepsilon_r'}\right)^2} + 1 \right)}$$

Plane Wave Propagation in Medium (6)

Lossless Medium	Low-loss Medium	Conductor
$(\sigma = 0)$	$(\varepsilon''/\varepsilon' \neq 0)$	$(\varepsilon''/\varepsilon' \to \infty)$
$\alpha = 0$	$\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$	$\alpha = \sqrt{\pi f \mu \sigma}$
$\beta = \omega \sqrt{\mu \varepsilon}$	$\beta = \omega \sqrt{\mu \varepsilon}$	$\beta = \sqrt{\pi f \mu \sigma}$

Plane Wave Propagation in Medium (7)

7. The associated magnetic field, \vec{H}

$$\vec{H}(z) = \hat{y}H_{y}$$
$$= \hat{y}\frac{\vec{E}_{x}}{\eta}$$
$$= \hat{y}\frac{E_{o}}{\eta}e^{-\alpha z}e^{-j\beta z}$$

where η is the intrinsic impedance of the medium.

ocw.utm.my

Electromagnetic Phenomena are described by using four Maxwell's equations

	Maxwell's equation		
	Integral form:	Description	Information
Gauss's Law			
(Electric fields)	$\underbrace{\varepsilon_o \prod \vec{E} \cdot d\vec{S}}_{Left} = \underbrace{q}_{Right}$	Left side:	Electric charge produces an
(Electric fields)			electric field, \vec{E} and the flux of
	Left Right		that field passing through any
		through to a closed surface, \vec{S}	closed surface is proportional to
			the total charge, q contained
		Right side:	within that surface.
		Total amount of charge, q	
		contained within that surface, .	Charge on an insulated
			conductor moves outward
	Differential form:		surface.
	\rightarrow \rightarrow	Left side:	The electric field, \vec{E} produced
	$\underbrace{\mathcal{E}_{o}\vec{\nabla}\cdot\vec{E}}_{Left} = \underbrace{\mathcal{O}}_{Right}$	Divergence of the electric	by electric charge diverges from
	$I = G$ $i \to i$	field, \vec{E} – the tendency of the	positive charge and converges
	Left Right	field to "flow" away from a	upon negative charge.
		specified location.	1 0
		Dight side:	The electric field, \vec{E} is tendency
		Right side: Electric charge density, ρ	to propagate perpendicularly
		Electric charge defisity, p	away from a surface charge.

Gauss's Law	Integral form:		
	$\underbrace{\mu_o \prod \vec{H} \cdot d\vec{S}}_{Left} = \underbrace{0}_{Right}$	Left side: The number of magnetic field lines – perpendicularly passing through a closed surface. Right side: Identically zero.	
	Differential form: $\underbrace{\mu_o \vec{\nabla} \cdot \vec{H}}_{Left} = \underbrace{0}_{Right}$	Left side: Divergence of the magnetic field – the tendency of the field to "flow" away from a point than toward it. Right side: Identically zero.	magnetic field at any point i zero.

Integral form:		
Faraday's Law	Left side: The circulation of the vector electric field, \vec{E} around a closed path, <i>C</i> .	Changing magnetic flux
$\int \vec{F} \cdot d\vec{l} = -\mu \int \frac{\partial H}{\partial t} \cdot d\vec{S}$	The circulation of the vector	through a surface induces
$\underbrace{\prod_{c} L^{-} u}_{c} = \mu_{o} \int_{S} \frac{\partial t}{\partial t}$	electric field, E around a closed	an emf in any boundary
Left Right	path, <i>C</i> .	path, C of that surface, and a changing magnetic
	Right side:	field, \vec{H} induces a
	The rate of change with time	<i>'</i>
	(d/dt) of magnetic field, through	
	any surface, \vec{S} .	
Differential form:	Left side:	A giraulating glastria
$\partial \vec{H}$		A circulating electric field is produced by a
$\nabla \times \vec{E} = -\mu_o \frac{\partial H}{\partial t}$	tendency of the field lines to	\rightarrow
$\vec{\nabla} \times \vec{E} = -\mu_o \frac{\partial \vec{H}}{\partial t}$ $\underbrace{\vec{\nabla} \times \vec{E}}_{Right} = -\mu_o \frac{\partial \vec{H}}{\partial t}$	circulate around a point.	changes with time.
Right		
	Right side:	
	The rate of change of the magnetic field \vec{U} over time	
	magnetic field, H over time (d/dt)	
	(((((((((((((((((((((((((((((((((((((((

	Integral form:		
Ampere's Law	_	Left side:	An electric current or a
	$(2\vec{r})$	Left side: The circulation of the magnetic field, \vec{H} around a closed path, <i>C</i> . Right side:	changing electric flux
	$\left \vec{\Pi} \cdot \vec{H} \cdot d\vec{l} \right = \int \left \vec{J} \right + \varepsilon \cdot \frac{\partial E}{\partial t} \left \cdot d\vec{S} \right $	magnetic field, \vec{H} around a	through a surface
	$\mathbf{\mathcal{I}}_{S}$ $\mathbf{\mathcal{I}}_{S}$ ∂t	closed path, C.	produces a circulating
	Left		magnetic field around any
	Kigni		
		Two sources for the magnetic	surface.
		field, \vec{H} ; a steady conduction	
		current, \vec{J}_c and a changing	
		electric field, \vec{E} through any	
		surface, bounded by closed	
		path, C.	
	Differential form:		
		Left side:	A circulating electric
	$\vec{\nabla} \times \vec{H}_{Left} = \vec{J}_c + \varepsilon_o \frac{\partial \vec{E}}{\partial t}$	Curl of the magnetic field, –	Ũ
	$\underbrace{\nabla \times H}_{c} = J_{c} + \mathcal{E}_{o} \frac{\partial t}{\partial t}$	the tendency of the field lines	\rightarrow
	Left UI	to circulate around a point.	changes with time.
	Kigni	to enculate around a point.	
		Right side:	An electric current, or a
		Two terms represent the	
		electric current density, \vec{J}_c and	
		the time rate of change of the	•
		electric field, \vec{E} .	magnetic field, \vec{H} around
			any path that bounds that
			surface.

References

- J. A. Edminister. *Schaum's outline of Theory and problems of electromagnetics,* 2nd Ed. New York: McGraw-Hill. 1993.
- M. N. O. Sadiku. *Elements of Electromagnetics,* 3th Ed. U.K: Oxford University Press. 2010.
- F. T. Ulaby. *Fundamentals of Applied Electromagnetics,* Media ed. New Jersey: Prentice Hall. 2001.
- Bhag Singh Guru and Hüseyin R. Hiziroglu. *Electromagnetic Field Theory Fundamentals*, 2nd Ed. U.K.: Cambridge University Press. 2009.

W. H. Hayt. Jr. Engineering Electromagnetics, 5th Ed. New York: McGraw-Hill. 2009.