

SEE 2523 Theory Electromagnetic

Chapter 2 Electric Fields

You Kok Yeow

Innovative.Entrepreneurial.Global

PREVIOUS

NEXT

Contents

1. Introduction the Electrostatic Fields

- **Maxwell's Equations**
- Coulomb's law
- Gauss's law

2. Electric Charge Distribution

- **Electric Intensity due to Single Point Charge**
- **Electric Intensity due to Multiple Point Charges**
- **Electric Field of a Line Charge**
- **Electric Field of a Sheet Charge**
- **Electric Field of a Ring Charge**

ocw.utm.my

3. Electric Fields in Mediums

4. Electrical Properties of Materials

Permittivity, ε of Dielectric Materials Conductivity, σ of Conducting Materials

5. Boundary Condition between Two Different Materials

Tangential Fields and Normal Fields Components

Continuous and Discontinuous Field Component at Boundary

6. Application and Problems

Capacitor

Electromagnetic Fields (Maxwell's Equations)

1. Modern electromagnetism is based on four fundamental relations

where \vec{E} is the electric field, \vec{H} is the magnetic field,

- \vec{D} is the electric flux density or electric displacement,
- \vec{B} is the magnetic flux density, \vec{J} is the current density,
- ρv is the charge density.

Electrostatic Fields

- **1.** In the static case, all charges are permanently fixed in space.
- 2. If the charges move, they move at steady rate, so P_{ν} and \vec{J} are constant in time ($d\vec{B}/dt = 0$)
- **3**. Thus, for electrostatics, Maxwell's equations are:

OPENCOURSEWARE

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_v}{\varepsilon_o} \qquad \qquad \vec{\nabla} \times \vec{E} = 0$$
(a) (b)

(a) The electric field intensity over any closed surface in free space is equal to the total charge enclosed in the surface.

(b) The static electric fields are irrotational.

ocw.utm.my

Innovative.Entrepreneurial.Global

Coulomb's law (Experimental law) (1)

- 1. Coulomb's law states that the force *F* between two point charges *Q*₁ and *Q*₂ with distance *R* is:
 - a) Directly proportional to the product Q1 Q2 of the charges.

 $F \propto Q_1 Q_2$

b) Inversely proportional to the square of the distance *R* between them.

$$F \propto rac{1}{R^2}$$

2. Formulation:

$$\vec{F} = \frac{kQ_1Q_2}{R^2} \hat{a}_n$$

where *k* is the proportionality constant depends on the choice of system.

Coulomb's law (2)

Step 3

Determine force F between two point charges Q1 and Q2 with distance R21

$$\vec{R}_{21} = \hat{x} \, dx + \hat{y} \, dy + \hat{z} \, dz \qquad \hat{a}_{21} = \frac{R_{21}}{|R_{21}|} \\ = (0-2)\hat{x} + (1-0)\hat{y} + (2-0)\hat{z} \qquad = \frac{-2\hat{x} + \hat{y} + 2\hat{z}}{3}$$

Step 2

$$\vec{F} = \frac{kQ_1Q_2}{R_{21}^2} \hat{a}_{21}$$
$$= \frac{kQ_1Q_2}{(3m)^2} \left(\frac{-2\hat{x} + \hat{y} + 2\hat{z}}{3}\right) \quad N$$
$$k = \frac{1}{4\pi\varepsilon_a}$$

 $\vec{F} = \frac{(20 \times 10^{-6} \,\mathrm{C})(-300 \times 10^{-6} \,\mathrm{C})}{4\pi\varepsilon_{o}(3 \,\mathrm{m})^{2}} \left(\frac{-2\hat{x} + \hat{y} + 2\hat{z}}{3}\right)$ $= 6 \left(\frac{2\hat{x} - \hat{y} - 2\hat{z}}{3} \right) \mathbf{N}$ $=4\hat{x}-2\hat{y}-4\hat{z}$ N

Innovative.Entrepreneurial.Global

Gauss's law (Experimental law)

OPENCOURSEWARE

1. Electric field intensity, \vec{E} is the force per unit charge when placed in an electric field.

$$\vec{E} = \frac{\vec{F}}{Q}$$
$$= \frac{kQ}{R^2} \hat{a}_n$$
$$= \frac{Q}{4\pi\varepsilon_o R^2} \hat{a}_n$$

2. Gauss's law state that the electric flux passing through any closed surface is equal to the total charge enclosed by that surface.

$$Q = \oint_{S} \vec{D} \cdot d\vec{S}$$

ocw.utm.my

Electric Intensity due to Multiple Point Charges (1)

1. If more than one charge at a different location in a vacuum, the total electric field, \vec{E} in the space external to the location of these charges is the vector summation of the electric field originating from each individual charge.

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \ldots + \vec{E}_N$$
$$= \sum_{n=1}^N \vec{E}_n$$

Example:

There has a point charge $Q_1 = 0.35 \,\mu C$ at (0, 4, 0) m and another point charge $Q_2 = -0.55 \,\mu C$ at (3, 0, 0) m. Determine the total electric intensity, \vec{E} at (0, 0, 5) m due to the both charges.

$$\vec{E}_{1} = -4\hat{y} + 5\hat{z}$$

$$\vec{E}_{2} = -3\hat{x} + 5\hat{z}$$

$$\vec{E}_{1} = \frac{0.35 \times 10^{-6}}{4\pi\varepsilon_{o}(41)} \left(\frac{-4\hat{y} + 5\hat{z}}{\sqrt{41}}\right) \text{ Vm}^{-1}$$

$$\vec{E}_{2} = \frac{-0.55 \times 10^{-6}}{4\pi\varepsilon_{o}(34)} \left(\frac{-3\hat{y} + 5\hat{z}}{\sqrt{34}}\right) \text{ Vm}^{-1}$$

$$\vec{E} = \vec{E}_{1} + \vec{E}_{2}$$

$$= 74.9\hat{x} - 48.0\hat{y} - 64.9\hat{z}$$

 $ec{E}$

Q

 ρ_{l}

 \vec{E}

an.

an

 \vec{E}

x

$$\vec{E} = \frac{\rho_l}{2\pi\varepsilon_o r} \hat{a}_r$$

 $\vec{E} = \frac{Q}{4\pi\varepsilon_o r^2} \hat{a}_r$

 ρ_l is the line charge density (C/m)

3) Electric field due to surface charges (Cylindrical Coordinates)

$$\vec{E} = \frac{\rho_s}{2\varepsilon_o} \hat{a}_n$$

 ho_s is the surface charge density $\left(C/m^2 \right)$

Distribution of Charges (2)

4) To determine the charge, Q for each distributions:

Line charge

OPENCOURSEWARE

Surface charge

Volume charge (Special cases)

$$dQ = \rho_v dv$$
$$Q = \int_v \rho_v dv$$

Innovative.Entrepreneurial.Global

Distribution of Charges (3) Electric Field of a Line Charge

$$\vec{E} = d\vec{E}_1 + d\vec{E}_2 + \ldots + d\vec{E}_N$$

 $dQ = \rho_l \, dl$ $= \rho_l \, dz$

 $d\vec{E}$

 $z = \infty$

Distribution of Charges (4) Electric Field of a Line Charge

The component z is cancel out, the charge is contribute from location z and –z.

Innovative.Entrepreneurial.Global

-Z.

 $z = -\infty$

Ζ $d\vec{E}$ P $dQ = \rho_s dS$ $= \rho_s \rho d\rho d\phi$ Ζ \vec{R} Χ $\rho = \infty$

Distribution of Charges (5) Electric Field of a Sheet Charge

$$d\vec{E} = \frac{dQ}{4\pi\varepsilon_o R^2} \left(\frac{-\rho\hat{\rho} + z\hat{z}}{\sqrt{\rho^2 + z^2}} \right)$$
$$= \frac{\rho_s \rho d\rho d\phi}{4\pi\varepsilon_o \left(\sqrt{\rho^2 + z^2}\right)^2} \left(\frac{-\rho\hat{\rho} + z\hat{z}}{\sqrt{\rho^2 + z^2}} \right)$$

The component radial, ρ is cancel out, because of all direction of component radial ρ around z

$$\vec{E} = \int_{0}^{2\pi} \int_{0}^{\infty} \frac{\rho_{s} \rho z d\rho d\phi}{4\pi \varepsilon_{o} \left(\rho^{2} + z^{2}\right)^{3/2}} \hat{z}$$

$$= \frac{\rho_{s} z}{2\varepsilon_{o}} \left[\frac{-1}{\sqrt{\rho^{2} + z^{2}}}\right]_{0}^{\infty} \hat{z}$$

$$= \frac{\rho_{s}}{2\varepsilon_{o}} \hat{z}$$

$$\underbrace{\bigoplus \bigoplus \bigoplus \bigoplus}_{\text{by NC SR}}$$

Distribution of Charges (Example) Electric Field of a Sheet Charge

Determine the force, *F* between the point charge, $Q_1 = 50 \ \mu$ C at (0, 0, 5) m and the disk charge, $Q_2 = 500 \ \pi\mu$ C with radial of $\rho = 5 \ m$ and $z = 0 \ m$.

Distribution of Charges (6) Electric Field of a Ring Charge

$$d\vec{E} = \frac{dQ}{4\pi\varepsilon_o R^2} \left(\frac{-\rho\hat{\rho} + z\hat{z}}{\sqrt{\rho^2 + z^2}} \right)$$
$$= \frac{\rho_s \rho d\phi}{4\pi\varepsilon_o \left(\sqrt{\rho^2 + z^2}\right)^2} \left(\frac{-\rho\hat{\rho} + z\hat{z}}{\sqrt{\rho^2 + z^2}} \right)$$

The component radial, ρ is cancel out, because of all direction of component radial ρ around z

$$\vec{E} = \int_0^{2\pi} \frac{\rho_l \rho z \, d\phi}{4\pi\varepsilon_o \left(\rho^2 + z^2\right)^{3/2}} \, \hat{z}$$
$$= \frac{\rho_l \rho z}{2\varepsilon_o \left(\rho^2 + z^2\right)^{3/2}} \, \hat{z}$$

- 1. The electromagnetic constitutive parameters of a material medium are
 - a) permittivity, \mathcal{E} . (Electrical study)
 - **b)** permeability, μ . (Magnetic study)
 - c) conductivity, σ . (Electrical study)

Electrical Fields in Materials (Maxwell's Equations)

1. Modern electromagnetism is based on four fundamental relations

OPENCOURSEWARE

$$\vec{\nabla} \cdot \vec{D} = \rho_{v}$$
$$\vec{\nabla} \cdot \vec{B} = 0$$
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

For an isotropic, linear and non-dispersive medium, the relations are

$$\vec{D} = \varepsilon \vec{E}$$
 $\vec{B} = \mu \vec{H}$ $\vec{J} = \sigma \vec{E}$ Ohm's law

2. In electrical study, we are concerned with only ~arepsilon~ and $~\sigma~$

ocw.utm.my

Innovative.Entrepreneurial.Global

Electrical Fields in Materials

3. A dielectric medium is linear if the magnitude of the induced polarization field is directly proportional to the magnitude of electric fields, \vec{E} .

$$\vec{P} = \varepsilon_o \chi_e \vec{E}$$

where χ_e is called the electric susceptibility of the material.

4. A dielectric medium is isotropic if the polarization field, \vec{P} and electric field, \vec{E} are in the same direction.

5. A dielectric medium is homogeneous if the ε , μ , and σ are constant throughout the medium.

Conducting Materials (Conductors)

- **1.** Conductor is a material that easily conducts electrical current.
- 2. Current through a given area is the electric charge passing through the area per unit time.
- **3.** Current density, \vec{J} is the current through a unit normal area.

Example

8e charges across a unit area in 1 second

Conducting Materials (Conductors)

4. In perfect dielectric, the conductivity, $\sigma = 0$

5. But, in perfect conductor, the conductivity, $\sigma = \infty$

 $\vec{E} = 0$

 $\vec{J} = 0$

- 6. Thus, perfect conductor cannot contain an electrostatic field within it.
- 7. The conductor is called an equipotential body, because the electric potential is the same at every point in the conductor.

Conducting Materials (Conductors)

8. In general, conductor has resistivity, ρ_c because $\sigma \neq \infty$

Conductor	Conductivity, σ (S/m)
 Silver Copper Gold Aluminium 	6.2×10^{7} 5.8×10^{7} 4.1×10^{7} 3.5×10^{7}

9. The relationship between conductivity, σ and resistivity, ho_c

$$\rho_c = \frac{1}{\sigma}$$

For non-perfect conductor, the $\vec{E} \neq 0$, the resistance, R is occurred in the conductor

$$R = \frac{V}{I}$$
$$= \frac{\int_{v} \vec{E} \cdot d\vec{l}}{\int_{S} \sigma \vec{E} \cdot d\vec{S}}$$

Dielectric Materials (Insulators)

1. There are two type of dielectric materials.

OPENCOURSEWARE

- a) Lossless materials
- b) Lossy materials

2. In general, the relative permittivity, \mathcal{E}_r of lossy materials consist of real

and imaginary parts.

$$\varepsilon_r = \varepsilon_r' - j\frac{\sigma}{\omega}$$

3. The real part, \mathcal{E}'_r is related to the ability of the material to store electrical energy and the imaginary part, σ/ω is the energy-dissipating component.

4. For lossless materials, the $\sigma/\omega \approx 0$

5. The lossy medium can be polarized by an external electric field, \vec{E}

ocw.utm.mv

Dielectric Materials (Insulators)

ocw.utm.m

8. The electric flux density, \vec{D} in a lossy medium is written as

$$\vec{D} = \varepsilon_o \vec{E} + \vec{P}$$

Polarization vector

where $\vec{P} = \varepsilon_o \chi_e \vec{E}$ and χ_e is called the electric susceptibility of the material.

- 9. The electric susceptibility, χ_e is the maximum electric field that a dielectric can tolerate or withstand without electrical breakdown.
- **10.** Dielectric breakdown occurred when a dielectric becomes conducting.

BOUNDARY CONDITIONS

Two Extensive Homogeneous Isotropic Dielectric

Innovative.Entrepreneurial.Global

ocw.utm.my

SA

1) Tangential \vec{E} is always continuous.

2) Tangential \vec{H} is continuous.

 $H_{t1} = H_{t2}$

Tangential \vec{H} is discontinuous by an amount corresponding to any surface current, \vec{J}_s which may flow.

 $H_{t1} = H_{t2} + \vec{J}_s$

3) Normal \vec{B} is always continuous.

$$\boldsymbol{B}_{n1} = \boldsymbol{B}_{n2}$$

BOUNDARY CONDITIONS (2)

4) Normal \vec{D} is continuous.

$$D_{n1} = D_{n2}$$

Normal \vec{D} is discontinuous by an amount corresponding to any surface charge, ρ_s which may be present.

 $D_{n1} = D_{n2} + \rho_s$

For static fields,

$$\oint \vec{E} \cdot d\vec{l} = 0$$

Integrate in the loop clockwise starting from a,

$$\int_{a}^{b} \vec{E} \cdot d\vec{l} + \int_{b}^{c} \vec{E} \cdot d\vec{l} + \int_{c}^{d} \vec{E} \cdot d\vec{l} + \int_{d}^{a} \vec{E} \cdot d\vec{l} = 0$$

 $\int_{c}^{d} \vec{E} \cdot d\vec{l} = \int_{\Delta w}^{0} E_{T2} \mathbf{a}_{T} \cdot dl \mathbf{a}_{T} = -E_{T2} \Delta w$ $\int_{d}^{a} \vec{E} \cdot d\vec{l} = \int_{-\Delta h/2}^{0} E_{N2} \mathbf{a}_{N} \cdot dl \mathbf{a}_{N} + \int_{0}^{\Delta h/2} E_{N1} \mathbf{a}_{N} \cdot dl \mathbf{a}_{N}$

 $=(E_{N1}+E_{N2})\frac{\Delta h}{2}$

Evaluate each segment,

$$\int_{a}^{b} \vec{E} \cdot d\vec{l} = \int_{0}^{\Delta w} E_{T1} \mathbf{a}_{T} \cdot dl \mathbf{a}_{T} = E_{T1} \Delta w$$

$$\int_{b}^{c} \vec{E} \cdot d\vec{l} = \int_{\Delta h/2}^{0} E_{N1} \mathbf{a}_{N} \cdot dl \mathbf{a}_{N} + \int_{0}^{-\Delta h/2} E_{N2} \mathbf{a}_{N} \cdot dl \mathbf{a}_{N}$$

$$= -(E_{N1} + E_{N2}) \frac{\Delta h}{2}$$

Summing for each segment, then we have the first boundary condition:

$$E_{T1}\Delta w - E_{T2}\Delta w = 0$$
$$E_{T1} = E_{T2}$$

Innovative.Entrepreneurial.Global

The pillbox is short enough, so the flux passes through the side is negligible.

$$\int_{top} \vec{D} \cdot d\vec{S} = \int D_{N1} a_N \cdot dS a_N = D_{N1} \Delta S$$
$$\int_{bottom} \vec{D} \cdot d\vec{S} = \int D_{N2} a_N \cdot dS (-a_N) = -D_{N2} \Delta S$$

Which sums to

$$(D_{N1} - D_{N2})\Delta S = Q_{enc}$$

Thus, it leads to the second boundary condition

$$D_{N1} - D_{N2} = \rho_S$$

ocw.utm.my

Innovative.Entrepreneurial.Global

Questions

Two extensive homogeneous isotropic dielectric meet on plane z=0. For z > 0, $\varepsilon_{r1} = 4$ and z < 0, $\varepsilon_{r2} = 3$. An uniform electric field, $\vec{E}_1 = 5\hat{a}_x - 2\hat{a}_y + 3\hat{a}_z \text{ kV/m}$ exists for $z \ge 0$ Find

- a) E_2 for $z \le 0$
- **b)** The angles E_1 and E_2 make with the interface

OPENCOURSEWARE

- c) The energy densities in both dielectrics
- d) The energy within a cube of side 2 m centered at (3, 4, -5)

Capacitance (1)

 The amount of charge, Q that accumulates as a function of potential difference, V is called the capacitance, C.

- 2. The unit capacitance is the farad (F) or coulomb per volt.
- 3. Capacitor can be created using two conducting bodies separated by an dielectric (insulator) medium.

Capacitance (2)

- 4. The three general form of capacitors are
 - a) Parallel-plate capacitor
 - **b)** Coaxial capacitor
 - c) Spherical capacitor

 $4\pi\varepsilon$

a

1

b

Capacitance (3)

References

- J. A. Edminister. *Schaum's outline of Theory and problems of electromagnetics,* 2nd Ed. New York: McGraw-Hill. 1993.
- M. N. O. Sadiku. *Elements of Electromagnetics,* 3th Ed. U.K: Oxford University Press. 2010.
- F. T. Ulaby. *Fundamentals of Applied Electromagnetics,* Media ed. New Jersey: Prentice Hall. 2001.
- Bhag Singh Guru and Hüseyin R. Hiziroglu. *Electromagnetic Field Theory Fundamentals*, 2nd Ed. U.K.: Cambridge University Press. 2009.

W. H. Hayt. Jr. Engineering Electromagnetics, 5th Ed. New York: McGraw-Hill. 2009.