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TYPES OF REACTION 

• Homogenous reaction – one phase reaction 

• Heterogeneous reaction – more than one phase 

• Irreversible reaction: 

 

  

 

• Reversible reaction: 
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The rate law: 

 

  

 

• Order with respect to A = α  

• Order with respect to B = β  

• Overall reaction order,  

     n = α + β 

• k = (Concentration)1-n 

                     Time 
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Elementary rate laws 

• The stoichiometry coefficients are the same as the 

individual reaction order of each species.  

 

• For the reaction: 

 

 

 

• The rate law would be:                                      
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• The stoichiometric coefficients are not the same as 

   the individual reaction order of each species. 

 

 For the reaction: 

 

 The rate law would be:                                      

 

 

 

NonElementary rate laws 
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Then the reaction is said to be 2nd order in A, 1st order in B, 

and 3rd order overall.  

 



REVERSIBLE  
REACTIONS  
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•  For general reaction: 

•  The net rate of formation A 

•  At equilibrium, rnet=0. Thus, 
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K  =  thermodynamic equilibrium constant 
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•  Multiplying both sides of equation by (-1), we obtain the rate law for the rate of 

disappearance of A: 
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•  At equilibrium, -rA = 0:  
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k  
• Specific reaction rate or the rate constant 

• k is temperature dependent, described by Arrhenius 

equation: 
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where  

A  = pre-exponential factor or frequency 

        factor 

E  = activation energy, J/mol or cal/mol 

R  = gas constant= 8.314 J/mol.K  

     = 1.987 cal/mol.K 

T   = absolute temperature, K 

 The activation energy is a measure of the minimum energy a that the 

reacting molecules must have in order for the reaction to occur. 



  From Arrhenius equation: 
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  Activation energy is 

determined experimentally: 
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1.  To express the concentration of each 

component in terms of the conversion X: 

2.  Therefore, 
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CONSTANT-VOLUME  
BATCH SYSTEMS 
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To express the concentration of each component in terms of the 

entering molar flow rate, F, the conversion X, and the volumetric 

flow rate, v: 
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LIQUID-PHASE  
REACTIONS 

*similar with constant-volume batch systems 



RTZNPV T

P=total pressure (atm) 

V=volume 

Z=compressibility factor 

NT=total number of moles 

R=gas constant=0.08206 

dm3.atm/mol.K 

T=temperature (K) 

 

  Equation of state: 

BATCH REACTORS with  
VARIABLE VOLUME 
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  At any time t, the volume of gas (Z0=Z):  
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FLOW REACTORS with  
VARIABLE VOLUMETRIC 

FLOW RATE 
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  At t=0: 

  At any time t, the volume of gas (Z0=Z):  

  Total concentration found from 

the gas law: 
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CONCENTRATION IN 
TERMS  
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We now have –rA as a function of X and 
can use the methods in Chapter 2 to design 

reactors. 



Expressing concentration in terms 
other than conversion 

• Membrane reactors and gas-multiple reaction: 
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