

CHEMICAL REACTION ENGINEERING (SKF3223)

Chapter 2: Conversion and Reactor Sizing

WAN NORHARYATI WAN SALLEH

hayati@petroleum.utm.my **RAFIZIANA MD. KASMANI** rafiziana@petroleum.utm.my

Innovative.Entrepreneurial.Global

Conversion, X

□ To quantify how far a reaction has progressed

OPENCOURSEWARE

How many moles of C are formed for every mole A consumed

Consider :
$$aA + bB \rightarrow cC + dD$$

The basis of calculation is always the limiting reactant

$$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$

□ Irreversible reaction: $X_{max} = 1.0$ (complete conversion)

□ Reversible reaction: $X_{max} = X_{equilibrium}$ (equilibrium conversion)

OPENCOURSEWARE

CONVERSION

BATCH REACTOR

□ For batch reactor , we are interested in determining how long to leave the reactants in the reactor to achieve a certain conversion

From mole balance:
$$r_A V = \frac{dN_A}{dt}$$
 From the conversion: $N_A = N_{A0} - N_{A0}X$

□ This is how the <u>Design Equation</u> derived from <u>mole balance equation</u> in terms of conversion

Differentiating with respect of time:

OPENCOURSEWARE

$$\frac{dN_A}{dt} = 0 - N_{A0} \frac{dX}{dt} \qquad N_{A0} = 0 : \text{ constant with respect of time}$$
$$r_A V = -N_{A0} \frac{dX}{dt} \implies \left[-r_A V = N_{A0} \frac{dX}{dt} \right] \implies \left[t = N_{A0} \int_{0}^{X} \frac{dX}{-r_A V} \right]$$

GAS FLOW SYSTEM

□ The entering molar flow rate, F_{A0} (mol/s)

OPENCOURSEWARE

$$F_{A0} = C_{A0} \upsilon_0$$

$$\frac{mol}{s} = \frac{mol}{dm^3} \cdot \frac{dm^3}{s}$$

$$C_{A0} \text{ for gas system}$$

$$C_{A0} = \frac{P_{A0}}{RT_0} = \frac{y_{A0}P_0}{RT_0}$$

 C_{A0} = entering concentration, mol/dm³

 Y_{a0} = entering mole fraction of A

 P_0 = entering total pressure, kPa

 T_0 =entering temperature, K

 P_{a0} = entering partial pressure

R= ideal gas constant = 8.314k.Pa.dm³/mol.K

<u>CSTR</u>

From mole balance:

$$V = \frac{F_{A0} - F_A}{-r_A}$$

OPENCOURSEWARE

From the conversion:

$$F_A = F_{A0} - F_{A0}X$$

Design Equation:

$$V = \frac{F_{A0} - (F_{A0} - F_{A0}X)}{-r_{A}}$$

$$V = \frac{F_{A0} - F_{A0} + F_{A0}X}{-r_{A}}$$

$$V = \frac{F_{A0} - F_{A0} + F_{A0}X}{-r_{A}}$$

Innovative.Entrepreneurial.Global

From mole balance:

$$\frac{dF_A}{dV} = r_A$$

From the conversion:

$$F_A = F_{A0} - F_{A0}X$$

Design Equation:

Differentiating with respect of volume:

$$\frac{dF_A}{dV} = 0 - F_{A0} \frac{dX}{dV}$$

 $F_{A0} = 0$: constant with respect of volume

$$r_A = -F_{A0} \frac{dX}{dV} \quad \Longrightarrow \quad \left[-r_A = F_{A0} \frac{dX}{dV} \right] \quad \Longrightarrow \quad V = F_{A0} \int_0^X \frac{dX}{-r_A}$$

ocw.utm.my

Innovative.Entrepreneurial.Global

<u>PBR</u>

From mole balance:

$$\frac{dF_A}{dW} = r'_A$$

From the conversion:

$$F_A = F_{A0} - F_{A0}X$$

Design Equation:

Differentiating with respect of weight of catalyst:

$$\frac{dF_A}{dW} = 0 - F_{A0} \frac{dX}{dW}$$
$$r'_A = -F_{A0} \frac{dX}{dW} \implies \left[-r'_A = F_{A0} \frac{dX}{dW} \right] \implies W = F_{A0} \int_0^X \frac{dX}{-r'_A}$$

DESIGN EQUATIONS

Design Equations for Isothermal Reactors

REACTOR	DIFFERENETIAL FORM	ALGEBRAIC FORM	INTEGRAL FORM
BATCH do	$N_{AO} \frac{dX}{dt} = (-r_A)V$		$t = N_{AO} \int_{0}^{X} \frac{dX}{-r_{A}V}$
CSTR		$V = \frac{F_{AO}(X)}{(-r_A)_{Exit}}$	
- PFR -	$F_{AO} \frac{dX}{dV} = (-r_A)$		$V = F_{AO} \int_{0}^{X} \frac{dX}{-r_{A}}$
→ PBR →	$F_{AO} \frac{dX}{dW} = (-r'_A)$		$W = F_{AO} \int_{0}^{X} \frac{dX}{-r'_{A}}$

REACTOR SIZING

By sizing a chemical reactor we mean we're either determine the reactor volume to achieve a given conversion <u>or</u> determine the conversion that can be achieved in a given reactor type and size.

□ Normally, the process / experimental data will be given $(X, -r_A)$

<u>PFR</u>

Simpson's One-Third Rule is one of the more common numerical methods.

Other numerical methods (see Appendix A.4, pp 1013-1015):

(i) Trapezoidal Rule (2 data points)

OPENCOURSEWARE

(ii) Simpson's Three-Eighth's Rule (4 data points)

(iii) Five-Point Quadrature Formula (5 data points)

OPENCOURSEWARE

Reactor Sizing

Innovative.Entrepreneurial.Global

REACTORS IN SERIES

Why?

- Sometimes 2 CSTR reactor volumes in series is less than the volume of 1 CSTR to achieve the same conversion.
- □ Can model a PFR with a large number of CSTR in series.
- In the case of PFR, whether you place 2 PFR in series or have 1 PFR, the total reactor volume required to achieve the same conversion is identical.

REACTORS IN SERIES

ocw.utm.my

(i) CSTR in series:

$$V_1 = \frac{F_{A0} X_1}{-r_{A1}}$$

TM

$$V_2 = \frac{F_{A0}(X_2 - X_1)}{-r_{A2}}$$

(ii) PFR in series:

$$V_{2} = F_{A0} \int_{X_{1}}^{X_{2}} \frac{dX}{-r_{A}}$$

(iii) CSTR + PFR in series:

- The time necessary to process one reactor volume by the volumetric rate entering the reactor
- □ Also called the *holding time* or *mean residence time*

) where $v_{0 is}$ entrance volumetric rate

OPENCOURSEWARE

SPACE VELOCITY (SV)

$$SV \equiv \frac{\nu_0}{V} = \frac{1}{\tau}$$

- **Reciprocal of the space time,** τ
- Two SV commonly used in industry:
 - GHSV Gas Hourly Space Velocity, h^{-1} v_0 at STP (standard temp. and pressure)
 - LHSV Liquid Hourly Space Velocity, h^{-1} v_0 at some reference temperature

REFERENCES

Main Reference:

OPENCOURSEWARE

1. Fogler,H.S., "*Elements of Chemical Reaction Engineering*", 4th Edition,Prentice Hall, New Jersey, 2006.

Other References:

- 1. Davis, M.E and Davis, R.J, *"Fundamentals of Chemical Reaction Engineering",* Mc-Graw-Hill, New York, 2003
- 2. Schmidt, L.D, "*The Engineering of Chemical Reactions*", Oxford, New York, 1998
- 3. Levenspiel,O., "*Chemical Reaction Engineering*", 3rd Edition, Wiley,New York, 1998
- 4. Smith, J., "*Chemical Engineering Kinetics*", 3rd Edition, McGraw-Hill, New York, 1981

