Theory of Computer Science SCJ 3203

Context-Free Grammar

Sazali Abd Manaf
Mohd Soperi Mohd Zahid

Definition 3.1.1:

Context-Free Grammars

A context-free grammar is a quadruple
(V, Σ, P, S) where:
-V is a finite set of variables
$-\sum$ (the alphabet) is a finite set of terminal symbols, where $\mathrm{V} \cap \sum=\phi$
$-P$ is a finite set of rules (production rules) written as:
$A \rightarrow \alpha$ for $A \in V, \alpha \in\left(v \cup \sum\right)^{*}$.
$-S$ is the start symbol, $S \in V$

Context-Free Grammars

- Terminal symbols - elements of the alphabet
- Variables or nonterminals - additional symbols used in production rules
- Variable S (start symbol) initiates the process of generating acceptable strings.

Context-Free Grammars

- A rule is an element of the set $V x\left(V \cup \sum\right)^{*}$.
- An A rule:

$$
[A, w] \text { or } A \rightarrow w
$$

- A null rule or lambda rule:

$$
A \rightarrow \lambda
$$

Definition 3.1.2

Let cfg $G=\left(V, \sum, P, S\right)$
and $\quad v \in(V \cup \Sigma)^{*}$.
The set of strings derivable from v is defined recursively as follows:

1. Basis: v is derivable from v
2. Recursive step:
if $u=x A y$ is derivable from v, and $\mathrm{A} \rightarrow w \in \mathrm{P}$, then $x w y$ is derivable from v
3. Closure: Precisely those strings constructed from v by finitely many applications of the recursive step are derivable from v

Context-Free Grammars

- Grammars are used to generate strings of a language.
- An A rule can be applied to the variable A whenever and wherever it occurs.
- No limitation on applicability of a rule - it is context free

Cfg - generating strings

- Generating a string:
- Transform a string by applying 1 rule
- example:
P :

$$
\begin{aligned}
& S \rightarrow u A v \\
& A \rightarrow w
\end{aligned}
$$

We can derived string uvw as:

$$
S=>u A v=>u w v
$$

Cfg - generating strings

- Example 2:
$G=(\{S\},\{a, b\}, P, S)$
P: $\quad S \rightarrow a S|b S| \lambda$
- The following strings can be derived:
$S=>\lambda$
$\mathrm{S}=>\mathrm{aS}=>\mathrm{a} \lambda=>\mathrm{a}$
$S=>b S=>b \lambda=>b$
S => aS => aaS => aa $\lambda=>$ aa
$S=>a S=>a b S=>a b \lambda=>a b$
$\mathrm{S}=>\mathrm{bS}=>$ baS $=>$ ba $\lambda=>$ ba
$S=>a S=>~ a b S=>~ a b b S ~=>~ a b b ~ \lambda ~=>~ a b b ~$

Cfg - generating strings

- Example 2:

$$
\begin{aligned}
& \mathrm{G}=(\{\mathrm{S}\},\{\mathrm{a}, \mathrm{~b}\}, \mathrm{P}, \mathrm{~S}) \\
& \mathrm{P}: \quad \mathrm{S} \rightarrow \mathrm{aS}|\mathrm{bS}| \lambda
\end{aligned}
$$

- The language above can also be defined using regular expression:

$$
\mathrm{L}(\mathrm{G})=(\mathrm{a}+\mathrm{b})^{*}
$$

Cfg - generating strings

- Example 3:

$$
\begin{aligned}
& G=(\{S, A\},\{a, b\}, P, S) \\
& P: \\
& \quad \begin{aligned}
S & \rightarrow A A \\
& A \rightarrow A A A|b A| A b \mid a
\end{aligned} \\
& \left.\begin{array}{l}
\text { P }
\end{array}\right)
\end{aligned}
$$

- The following strings can be derived:
$S=>A A$
$S=>a A \quad[A \rightarrow a]$
$S=>$ aAAA $\quad[A \rightarrow$ AAA $]$
$\mathrm{S}=>$ abAAA $\quad[\mathrm{A} \rightarrow \mathrm{bA}]$
$S=>$ abaAA $\quad[A \rightarrow$ a]
$\mathrm{S}=>$ abaAbA $\quad[\mathrm{A} \rightarrow \mathrm{Ab}]$
$S=>$ abaabA $\quad[A \rightarrow a]$
$S=>$ ababaa $\quad[A \rightarrow a]$

Cfg - generating strings

- A string w is derivable from v if there is a finite sequence of rule applications that transforms v to w.
$v=>w_{1}=>w_{2}=>\ldots=>w_{n}=w$
- $v=>^{*}$ w means
w is derivable from v

Definition 3.1.3

Let $G=\left(V, \sum, P, S\right)$ be a cfg

1. A string $w \in\left(\mathrm{~V} \cup \sum\right)^{*}$ is a sentencial form of G if there is a derivation $S=>^{*} w$ in G
2. A string $w \in \sum^{*}$ is a sentence of G if there is a derivation $S=>^{*} w$ in G
3. The language of G , denoted by $\mathrm{L}(\mathrm{G})$, is the set $\left\{w \in \sum^{*} \mid S=>^{*} w\right\}$

Context-Free Grammars

- Sentencial forms are the strings derivable from start symbol of the grammar.
- Sentences are forms that contain only terminal symbols.
- A set of strings over \sum is context-free language if there is a context-free grammar that generates it.

Definition 3.1.4

Let $\mathrm{G}=\left(\mathrm{V}, \sum, \mathrm{P}, \mathrm{S}\right)$ be a cfg
And $S^{*}{ }_{G}=>\mathrm{w}$ a derivation.
The derivation tree DT of $\mathrm{S}_{\mathrm{G}}=>\mathrm{w}$ is an ordered
tree that can be built iteratively as:

1. Initialize DT with root S.
2. If $\mathrm{A} \Rightarrow x_{1} x_{2} \ldots x_{n}$ with $x_{i} \in(V \cup \Sigma)$ is the rule in derivation of string $u A v$, then add $x_{1}, x_{2}, \ldots, x_{n}$ as the children of A in the tree.
3. If $A=>\lambda$ is the rule in derivation applied to string $u A v$, then add λ as the only child of A in tree.

Example:

$$
G=(\{S, A\},\{a, b\}, P, S)
$$

P: $\quad S \rightarrow A A$

$$
\mathrm{A} \rightarrow \mathrm{AAA}|\mathrm{bA}| \mathrm{Ab} \mid \mathrm{a}
$$

The derivation tree for

$$
S=>A A=>a A=>a b A=>a b A b=>a b a b \text { is: }
$$

Context-Free Grammars

$S=>a S=>a S a=>a b a \quad S=>S a=>a S a=>a b a$

S

S

1
b
b

Context-Free Grammars

- $A \operatorname{cfg} G$ is ambiguous if there exist >1 DT for n, where $n \in L(G)$.
- Example:
$\mathrm{G}=(\{\mathrm{S}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S})$
P: $\quad \mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{Sa\mid b}$
the string aba can be derived as:

$$
\mathrm{S}=>\mathrm{aS}=>\mathrm{aSa}=>\mathrm{aba}
$$

or

$$
\mathrm{S}=>\mathrm{Sa}=>\mathrm{aSa}=>\mathrm{aba}
$$

Example of Grammars and Languages

Example 3.2.1

- Let G be the grammar given by the production

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSa} \mid \mathrm{aBa} \\
& \mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{b}
\end{aligned}
$$

- Then $L(G)=\left\{a^{n} b^{m} a^{n} \mid n>0, m>0\right\}$

Example 3.2.2

- Let $L(G)=\left\{a^{n} b^{m} c^{m} d^{2 n} \mid n \geq 0, m>0\right\}$
- Then the production rules for this grammar is:
$\mathrm{S} \rightarrow$ aSdd $\mid \mathrm{A}$
$\mathrm{A} \rightarrow \mathrm{bAc} \mid \mathrm{bc}$

Example 3.2.3

- A string w is a palindrome if $w=w^{R}$
- The set of palindrome over $\{a, b\}$ can be derived using rules:

$$
\begin{aligned}
& S \rightarrow a|b| \lambda \\
& S \rightarrow a S a \mid b S b
\end{aligned}
$$

Example 3.2.5

- Consider the grammar:

$$
\begin{aligned}
& S \rightarrow \mathrm{abScB} \mid \lambda \\
& \mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}
\end{aligned}
$$

- The language of this grammar consists of the set:

$$
\left\{(a b)^{n}\left(c b^{m_{n}}\right)^{n} \mid n \geq 0, m_{n}>0\right\}
$$

Example 3.2.9

- Grammar for even-length strings over $\{\mathrm{a}, \mathrm{b}\}$:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aE}|\mathrm{bE}| \lambda \\
& \mathrm{E} \rightarrow \mathrm{aS} \mid \mathrm{bS}
\end{aligned}
$$

Example 3.2.12

- Consider the grammar:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{bS}|\mathrm{cS}| \mathrm{aB} \mid \lambda \\
& \mathrm{B} \rightarrow \mathrm{aB}|\mathrm{cS}| \mathrm{bC} \mid \lambda \\
& \mathrm{C} \rightarrow \mathrm{aB}|\mathrm{bS}| \mathrm{bC} \mid \lambda
\end{aligned}
$$

Regular Grammars

Regular Grammars

- Regular grammars play prominent role in lexical analysis and parsing of programming languages.
- Regular grammars are obtained by placing restrictions on the form of the right hand side of the rules.

Definition 3.3.1

A regular grammar is a cfg in which each rule has one of the following form:

1. $\mathrm{A} \rightarrow a$
2. $\mathrm{A} \rightarrow a B$
3. $\mathrm{A} \rightarrow \lambda$
where $\mathrm{A}, \mathrm{B} \in \mathrm{V}$, and $\mathrm{a} \in \Sigma$

Regular Grammars

- There is at most ONE variable in a sentential form - the rightmost symbol in the string.
- Each rule application adds ONE terminal to the derived string.derivation is terminated by rules:
$-\mathrm{A} \rightarrow a \quad$ OR $\quad \mathrm{A} \rightarrow \lambda$

Example 3.3.1

- Consider the grammar:

G: $S \rightarrow$ abSA | λ

$$
\mathrm{A} \rightarrow \mathrm{Aa} \mid \lambda
$$

- The equivalent regular grammar:
$\mathrm{Gr}: \mathrm{S} \rightarrow \mathrm{aB} \mid \lambda$

$$
\begin{aligned}
& \mathrm{B} \rightarrow \mathrm{bS} \mid \mathrm{bA} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \mid \lambda
\end{aligned}
$$

Example 3.3.2

Syntax of Pascal in Backus-Naur Form

$$
\begin{array}{ll}
\text { <assign> } & \rightarrow \text { <var> := <exp> } \\
\text { <var> } & \rightarrow \mathrm{A}|\mathrm{~B}| \mathrm{C} \\
\text { <exp> } & \rightarrow \text { <var>+<exp> } \\
& \text { <var> - <exp> } \\
& (\text { <exp>) } \mid<\text { var>*<exp> } \\
& \text { <var> }
\end{array}
$$

Example 3.3.3

Is $A:=B^{*}(A+C)$ Syntactically correct?

<assign> \rightarrow <var> := <expr>

$$
\begin{aligned}
& \mathrm{A}:=\text { <expr }> \\
& \mathrm{A}:=\text { <var>*<expr> } \\
& \mathrm{A}:=\mathrm{B}^{*}<\text { expr }> \\
& \mathrm{A}:=\mathrm{B}^{*}(\langle\text { var }>+<\text { expr }>) \\
& \mathrm{A}:=\mathrm{B}^{*}(\mathrm{~A}+<\text { expr }>) \\
& \mathrm{A}:=\mathrm{B}^{*}(\mathrm{~A}+<\text { var }>) \\
& \mathrm{A}:=\mathrm{B}^{*}(\mathrm{~A}+\mathrm{C})
\end{aligned}
$$

Example 3.3.4

Is $A:=B^{*}(A+C)$ Syntactically correct?

$R E \rightarrow R G$

- Consider the regular expression:

$$
a^{+} b^{*}
$$

- The regular grammar is:
$S \rightarrow a S \mid a R$
$R \rightarrow b R \mid \lambda$

$\mathrm{RE} \rightarrow \mathrm{RG} \rightarrow \mathrm{RL}$

- The regular language $L=a^{+} b^{*}$ can be defined as:

$$
\mathrm{L}=(\mathrm{V}, \Sigma, \mathrm{P}, \mathrm{~S})
$$

where:
$\mathrm{V}=\{\mathrm{S}, \mathrm{R}\}$
$\Sigma=\{a, b\}$
P: $\quad S \rightarrow a S \mid a R$
$R \rightarrow b R \mid \lambda$

Non-Regular Language

- The language $L=a^{+} b^{*}$ can also be defined as:

$$
\mathrm{L}=(\mathrm{V}, \Sigma, \mathrm{P}, \mathrm{~S})
$$

where:
$V=\{S, A, B\}$
$\Sigma=\{a, b\}$
P: $\quad S \rightarrow A B$
$A \rightarrow a \mathrm{a} \mid$ ano ${ }^{2}$-regular
$B \rightarrow b B \mid \lambda \quad$ grammar

Derivation

- A terminal string is in the language of the grammar if it can be derived from the start symbol S using the rules of the grammar:
- Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AASB} \mid \mathrm{AAB} \\
& \mathrm{~A} \rightarrow \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{bbb}
\end{aligned}
$$

Derivation

Derivation

S ==> AASB
$==>$ AAAASBB
==> AAAAAASBBB
AAAAAAAABBBB
aaaaaaaaBBBB

Rule Applied
$S \rightarrow$ AASB
$S \rightarrow$ AASB
$S \rightarrow$ AASB $==>$
$S \rightarrow A A B$
$\mathrm{A} \rightarrow \mathrm{a}$
$==>$ aaaaaaaabbbbbbbbb $\quad B \rightarrow b b b$

Derivation

- Let G be the grammar :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{aA} \\
& \mathrm{~A} \rightarrow \mathrm{bA} \mid \lambda
\end{aligned}
$$

- The derivation of aabb is as shown:

$S \rightarrow$ aS
 \rightarrow aaA
 \rightarrow aabA
 \rightarrow aabbA

\rightarrow aabb $\lambda \rightarrow$ aabb

Example

- Let G be the grammar :

$$
s \rightarrow \mathrm{aS}|\mathrm{bs}| \lambda
$$

- The derivation of aabb is as shown:

$$
\begin{aligned}
& S \boldsymbol{\rightarrow} \text { aS } \\
& \boldsymbol{\rightarrow} \text { abS } \\
& \boldsymbol{\rightarrow} \text { abbs } \\
& \boldsymbol{\rightarrow} \text { abbaS }
\end{aligned}
$$

\rightarrow abbaaS $\quad \rightarrow$ abbaa
$\rightarrow a^{*} b^{*}$

Example

- Let G be the grammar :

$$
s \rightarrow a S b \mid a b
$$

- The derivation of aabb is as shown:

$$
\begin{aligned}
S & \rightarrow a S b \\
& \rightarrow \text { aaSbb }
\end{aligned}
$$

\rightarrow aaaSbbb
\rightarrow aaaaSbbbb
\rightarrow aaaabbbb
$\rightarrow a^{n} b^{n}$

Selected Exercises

Exercise 1

Let G be the grammar:
$S \rightarrow S A B \mid \lambda$
$A \rightarrow a A \mid a$
$B \rightarrow b B \mid \lambda$

1. Give a leftmost derivation of aabaaabb. Build the derivation tree.
2. Give another derivation tree of aabaaabb which is different from that of (a).
3. Give a regular expression for $L(G)$.

Exercise 2

For each of the following context free grammar, use set notation to define the language generated by the grammar.
$-S \rightarrow$ aaSB $\mid \lambda$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}$
$-\mathrm{S} \rightarrow \mathrm{aSbb} \mid \mathrm{A}$
$\mathrm{A} \rightarrow \mathrm{cA} \mid \mathrm{c}$
$-\mathrm{S} \rightarrow$ abSdc|A
A \rightarrow cdAba | λ

Exercise 2 (cont.)

For each of the following context free grammar, use set notation to define the language generated by the grammar.
$-S \rightarrow a S b \mid A$
$\mathrm{A} \rightarrow \mathrm{cAd} \mid \mathrm{cBd}$
$B \rightarrow a B b \mid a b$
$-\mathrm{S} \rightarrow \mathrm{aSB} \mid \mathrm{aB}$
$B \rightarrow b b \mid b$

References

