
Context-Free Grammar

Sazali Abd Manaf

Mohd Soperi Mohd Zahid

Theory of Computer Science –
SCJ 3203

2

Definition 3.1.1:
Context-Free Grammars

A context-free grammar is a quadruple

(V, , P, S) where:

– V is a finite set of variables

– (the alphabet) is a finite set of terminal symbols , where
V =

– P is a finite set of rules (production rules) written as:

A for A V, (v)*.

– S is the start symbol, S V

3

Context-Free Grammars

• Terminal symbols – elements of the alphabet

• Variables or nonterminals – additional symbols used
in production rules

• Variable S (start symbol) initiates the process of
generating acceptable strings.

4

Context-Free Grammars
• A rule is an element of the set V x (V)*.

• An A rule:

[A,w] or A w

• A null rule or lambda rule:

A

5

Definition 3.1.2
Let cfg G = (V, , P, S)
and v (V)*.

The set of strings derivable from v is defined recursively as
follows:

1. Basis: v is derivable from v
2. Recursive step:

if u=xAy is derivable from v,
and A w P,
then xwy is derivable from v

3. Closure: Precisely those strings constructed from v by
finitely many applications of the recursive step are
derivable from v

6

Context-Free Grammars
• Grammars are used to generate strings of a

language.

• An A rule can be applied to the variable A
whenever and wherever it occurs.

• No limitation on applicability of a rule – it is
context free

7

Cfg – generating strings
• Generating a string:

– Transform a string by applying 1 rule

• example:

P: S uAv

A w

We can derived string uvw as:

S => uAv => uwv

8

Cfg – generating strings
• Example 2:

G = ({S}, {a,b}, P, S)
P: S aS | bS |

• The following strings can be derived:
S =>
S => aS => a => a
S => bS => b => b
S => aS => aaS => aa => aa
S => aS => abS => ab => ab
S => bS => baS => ba => ba
S => aS => abS => abbS => abb => abb

9

Cfg – generating strings
• Example 2:

G = ({S}, {a,b}, P, S)

P: S aS | bS |

• The language above can also be defined using
regular expression:

L(G) = (a+b)*

10

Cfg – generating strings
• Example 3:

G = ({S,A}, {a,b}, P, S)
P: S AA

A AAA | bA | Ab | a
• The following strings can be derived:

S => AA
S => aA [A a]
S => aAAA [A AAA]
S => abAAA [A bA]
S => abaAA [A a]
S => abaAbA [A Ab]
S => abaabA [A a]
S => ababaa [A a]

11

Cfg – generating strings
• A string w is derivable from v if there is a finite

sequence of rule applications that transforms v to w.

v => w1 => w2 =>...=> wn = w

• v =>* w means

w is derivable from v

12

Definition 3.1.3

Let G = (V, , P, S) be a cfg

1. A string w (V)* is a sentencial form of G if
there is a derivation S=>*w in G

2. A string w* is a sentence of G
if there is a derivation S=>*w in G

3. The language of G, denoted by L(G), is the set
{w* | S =>*w}

13

Context-Free Grammars
• Sentencial forms are the strings derivable

from start symbol of the grammar.

• Sentences are forms that contain only
terminal symbols.

• A set of strings over ∑ is context-free language
if there is a context-free grammar that
generates it.

14

Definition 3.1.4
Let G = (V, , P, S) be a cfg

And S*G=> w a derivation.

The derivation tree DT of S*G=> w is an ordered

tree that can be built iteratively as:
1. Initialize DT with root S.

2. If A => x1 x2…xn with xi (V) is the rule in derivation of string uAv,
then add x1, x2,..., xn as the children of A in the tree.

3. If A => is the rule in derivation applied to string uAv, then add as
the only child of A in tree.

15

Example:

G = ({S,A}, {a, b}, P, S)

P: S AA

A AAA | bA | Ab | a

The derivation tree for

S=>AA=>aA=>abA=>abAb=>abab is:

S

A A

a b A

A b

a

16

Context-Free Grammars
S=>aS=>aSa=>aba S=>Sa=>aSa=>aba

S S

a S S a

S a a S

b b

17

Context-Free Grammars
• A cfg G is ambiguous if there exist >1 DT for n,

where n L(G).

• Example:
G = ({S}, {a, b}, P, S)

P: S aS | Sa | b

the string aba can be derived as:

S=>aS=>aSa=>aba

or

S=>Sa=>aSa=>aba

18

Example of Grammars and
Languages

19

Example 3.2.1
• Let G be the grammar given by the production

S aSa | aBa

B bB | b

• Then L(G) = {an bm an | n>0, m>0}

20

Example 3.2.2

• Let L(G) = {an bm cm d2n | n≥0, m>0}

• Then the production rules for this grammar is:

S aSdd | A

A bAc | bc

21

Example 3.2.3

• A string w is a palindrome if w=wR

• The set of palindrome over {a,b} can be derived
using rules:

S a | b |

S aSa | bSb

22

Example 3.2.5

• Consider the grammar:

S abScB |

B bB | b

• The language of this grammar consists of the set:

{(ab)n (cbmn)n | n≥0, mn >0}

23

Example 3.2.9

• Grammar for even-length strings over {a,b}:

S aE | bE |

E aS | bS

24

Example 3.2.12

• Consider the grammar:

S bS | cS | aB |

B aB | cS | bC |

C aB | bS | bC |

25

Regular Grammars

Regular Grammars

• Regular grammars play prominent role in
lexical analysis and parsing of
programming languages.

• Regular grammars are obtained by placing
restrictions on the form of the right hand
side of the rules.

26

27

Definition 3.3.1

A regular grammar is a cfg in which each
rule has one of the following form:

1. A a
2. A aB
3. A λ

where A, B V, and a Σ

Regular Grammars

• There is at most ONE variable in a
sentential form – the rightmost symbol in
the string.

• Each rule application adds ONE terminal
to the derived string.derivation is
terminated by rules:

– A a OR A λ

28

29

Example 3.3.1

• Consider the grammar:

G: S abSA |

A Aa |

• The equivalent regular grammar:

Gr:S aB |

B bS | bA

A aA |

30

Example 3.3.2
Syntax of Pascal in Backus-Naur Form

<assign> <var> := <exp>

<var> A B C

<exp> <var>+<exp>

<var> - <exp>

(<exp>) <var>*<exp>

<var>

31

Example 3.3.3
Is A := B*(A+C) Syntactically correct?

<assign> <var> := <expr>

A := <expr>

A := <var>*<expr>

A := B*<expr>

A := B*(<var>+<expr>)

A := B*(A+<expr>)

A := B*(A+<var>)

A := B*(A+C)

32

Example 3.3.4
Is A := B*(A+C) Syntactically correct?

<assign>

<var> := <exp>

A <var> * <exp>

B (<exp>)

<var> + <var>

A C

33

RE RG

• Consider the regular expression:

a+b*

• The regular grammar is:
S aS aR

R bR

34

RE RG RL

• The regular language L = a+b*

can be defined as:

L = (V, Σ, P, S)

where:

V = {S,R}

Σ = {a,b}

P: S aS aR

R bR

35

Non-Regular Language

• The language L = a+b*

can also be defined as:

L = (V, Σ, P, S)

where:

V = {S,A,B}

Σ = {a,b}

P: S AB

A aA anon-regular

B bB grammar

36

Derivation

• A terminal string is in the language of the
grammar if it can be derived from the start
symbol S using the rules of the grammar:

• Example:

S AASB | AAB

A a

A bbb

37

Derivation

Derivation Rule Applied

S ==> AASB S AASB

==> AAAASBB S AASB

==> AAAAAASBBB S AASB ==>
AAAAAAAABBBB S AAB ==>
aaaaaaaaBBBB A a

==> aaaaaaaabbbbbbbbb B bbb

38

Derivation

• Let G be the grammar :

S aS | aA

A bA |

• The derivation of aabb is as shown:

S aS

 aaA

 aabA

 aabbA

 aabb aabb

39

Example

• Let G be the grammar :

S aS | bS | λ

• The derivation of aabb is as shown:

S aS

 abS

 abbS

 abbaS

 abbaaS abbaa

 a*b*

40

Example

• Let G be the grammar :

S aSb | ab

• The derivation of aabb is as shown:

S aSb

 aaSbb

 aaaSbbb

 aaaaSbbbb

 aaaabbbb

 anbn

41

Selected Exercises

42

Exercise 1

Let G be the grammar:

S → SAB | λ

A → aA | a

B → bB | λ

1. Give a leftmost derivation of aabaaabb. Build the derivation
tree.

2. Give another derivation tree of aabaaabb which is different
from that of (a).

3. Give a regular expression for L(G).

43

Exercise 2

For each of the following context free grammar, use set
notation to define the language generated by the
grammar.

– S → aaSB | λ

B → bB | b

– S → aSbb | A

A → cA | c

– S → abSdc | A

A → cdAba | λ

44

Exercise 2 (cont.)

For each of the following context free grammar, use set
notation to define the language generated by the
grammar.

– S → aSb | A

A → cAd | cBd

B → aBb | ab

– S → aSB | aB

B → bb | b

45

References

