

Theory of Computer Science – SCJ 3203

Finite Automata

Sazali Abd Manaf Mohd Soperi Mohd Zahid

Innovative.Entrepreneurial.Global

- Deterministic Finite Automaton (DFA)
- Non-Deterministic Finite Automaton (NFA)
- Regular Expressions and Languages

Finite Automata (FA)

- A simple class of machines with limited capabilities.
- good models for computers with an extremely limited amount of memory.
- e.g., an automatic door : a computer with only a single bit of memory

State Transition Table

INPUT SIGNAL NEITHER REAR BOTH FRONT **CLOSED CLOSED CLOSED CLOSED OPEN STATE OPEN CLOSED OPEN OPEN OPEN**

Examples

- Elevator controller
 - state : floor
 - input : signal received from the buttons.
- Dishwashers
- Electronic thermostats
- Digital watches
- Calculators

Definition of fa

- A finite automaton (fa) is a collection of 3 things:
 - A finite set of states, one of which is designated as the initial state, called the start state, and some (maybe none) of which are designated as final states.
 - An **alphabet** of possible input letters.
 - A finite set of transition rules that tell for each state and for each letter of the input alphabet which state to go to next.

State Diagram

- start state = q_1
- final state = q_2
- transitions = each arrows
- alphabet = each labels
- When this automaton receives an input string such as 1101, it processes that string and produce output (Accept or Reject).

0,1

Language of machine

• If A is the set of all strings that machine M accepts, we say that A is the language of machine M.

L(M) = A

- M recognizes A (only 1 language)
- M accepts strings (several strings)
- If M accepts no strings, it still recognizes one language, empty language \varnothing

Formal Definition

- A finite automaton is a 5-tuple $(Q, \sum, \delta, q_0, F)$ where
 - Q is a finite set called the states,
 - \sum is a finite set called the **alphabet**,
 - $\delta: Q \times \Sigma \rightarrow Q$ is the **transition function**,
 - $\mathbf{q}_0 \in \mathbf{Q}$ is the **start state**, and
 - $\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept states (final states)

Example : Finite Automaton M₁

0,1

- $M_1 = (Q, \sum, \delta, q_0, F)$, where
 - $Q = \{q_1, q_2, q_3\},\$
 - $-\sum = \{0,1\},\$
 - δ is described as
 - $-q_1$ is the start state, and

$$- F = \{q_2\}.$$

Innovative.Entrepreneurial.Global

Example : Finite Automaton M₁

0,1

What is the language of M_1 ?

Innovative.Entrepreneurial.Global

Example : Finite Automaton M₁

 A = {w | w contains at least one 1 and an even number of 0s follow that last 1}

 $L(M_1) = A$, or equivalently, M1 recognizes A

Example : Finite Automaton M₂

- $M_2 = (Q, \sum, \delta, q_0, F)$, where
 - Q =
 - $-\sum =$
 - δ is described as
 - is the start state, and

Example : Finite Automaton M₂

What is the language of M_2 ?

$$L(M_2) = \{w \mid w \text{ ends in a 1}\}$$

Empty String ε

- If the start state is also a final state, what string does it automatically accept ?
- $L(M_3) = \{ w \mid w \text{ is the empty string } \varepsilon \text{ or ends in a } 0 \}$

Example : Finite Automaton M₄

 M_4 = (Q, Σ , δ ,q₀,F) , where - Q = - Σ =

 $-\delta$ is described as

- ? is the start state, and
- F = { }.

ocw.utm.my

L(M₄) = Innovative.Entrepreneurial.Global

Example : Finite Automaton M₅

- $\sum = \{ < reset >, 0, 1, 2 \}$
- we treat <reset> as a single symbol.
- What does the M₅ accept ?

FA with Computer Language

- Computer Language
 - Certain character strings are recognizable words. (DO, IF,END,...)
 - Certain strings of words are recognizable commands.
 - Certain set of commands become a program that can be compiled which means translated into machine commands.
- FA is used to determine whether the input commands (instruction) is valid or not corresponding to the structure rules.
- FA implements the rule with the transitions.

Determinism

- So far, every step of a computation follows in a unique way from the preceding step.
- When the machine is in a given state and reads the next input symbol, we know what the next state will be – it is called **deterministic computation**
- Deterministic Finite Automata -- DFA

Nondeterminism

- In a nondeterministic machine, several choices may exist for the next state at any point.
- Nondeterminism is a generalization of the determinism, so every deterministic finite automaton is automatically a nondeterministic finite automaton.
- Nondeterministic Finite Automata--NFA

Example of DFA vs. NFA

Differences between DFA & NFA

- Every state of DFA always has exactly one exiting transition arrow for each symbol in the alphabet while the NFA can violate the rule.
- In a DFA, labels on the transition arrows are from the alphabet while NFA can have an arrow with the label ε.

How does the NFA work?

- When we are at a state with multiple choices to proceed (including & symbol), the machine splits into multiple copies of itself and follow all the possibilities in parallel.
- Each copy of the machine takes one of possible ways to proceed and continuous as before. If there are subsequent choices, the machine splits again.
- If the next input symbol doesn't appear on any of the arrows exiting the state occupied by a copy of the machine, that copy dies.
- If any one of these copies is in an accept state at the end of the input, the NFA accepts the input string.

Tree of possibilities

- Think of a nondeterministic computation as a tree of possibilities
- The root of the tree corresponds to the start of the computation.
- Every branch point in the tree corresponds to a point in the computation at which the machine has multiple choices.
- The machine accepts if at least one of the computation branches ends in the an accept state.

Tree of possibilities

Example: 010110

Properites of NFA

- Every NFA can be converted into an equivalent DFA.
- Constructing NFAs is sometimes easier than directly construction DFAs.
- NFA may be much smaller than it DFA counterpart.
- NFA's functioning may be easier to understand.
- Good introduction to nondeterminism in more powerful computational models because FA are especially easy to understand.

Example: Converting NFA into DFA

NFA: recognizes language which contains 1 in the third position from the end

Equivalent DFA:

Formal definition of NFA

- A nondeterministic finite automaton is a 5-tuple $(Q, \sum, \delta, q_0, F)$, where
 - Q is a finite set of states,
 - $-\sum$ is a finite alphabet,
 - $-\delta: Q \ge \Sigma_{\varepsilon} \rightarrow P(Q)$ is the transition function,
 - $-q_0$ is the start state, and
 - $F \subseteq Q$ is the set of accept states.

Notation:

P(Q) is called power set of Q (a collection of all subsets of Q).

and
$$\sum_{\epsilon} = \sum \cup \{\epsilon\}$$

Example: Formal definition of NFA

- Formal definition of N₁ is (Q, Σ , δ ,q₀,F) , where
 - $Q = \{q_1, q_2, q_3, q_4\}$
 - $-\sum = \{0,1\}$
 - δ is given as

	0	1	3
q_1	$\{q_1\}$	${q_1,q_2}$	Ø
q ₂	${q_3}$	Ø	${q_3}$
q ₃	Ø	$\{q_4\}$	Ø
q ₄	$\{q_4\}$	$\{q_4\}$	Ø

 $-q_0$ is the start state, and

regular expressions

- The new definition we have talked about is claimed as "Regular Expression".
- Languages which are able to be described by RE, are called "Regular Languages".
 - Not every languages are able to be described by RE.
 - Regular languages may also be described by another fine definitions, besides the RE.

- The symbols that appear in RE are
 - –the letters of the alphabet $\pmb{\Sigma}$
 - –the symbol of null string ϵ or λ
 - parentheses ()
 - star operator *
 - $-\cup$ or + sign

regular expressions

Say that R is a regular expression if R is

- 1. a for some a in the alphabet Σ ,
- 2. ε or λ,
- 3. Ø,
- 4. ($R_1 \cup R_2$), where R_1 and R_2 are regular expressions,
- 5. ($R_1 \circ R_2$), where R_1 and R_2 are regular expressions, or
- 6. (R_1^*) , where R_1 is regular expression.

- Rule 1: Every letter of Σ can be made into a regular expression
- Rule 2: If r₁ and r₂ are regular expressions, then so are

(i)
$$(r_1)$$

(ii) $r_1r_2 \text{ or } r_1^{\circ} r_2$
(iii) $r_1 \cup r_2$
(iv) r_1^{*}

• Rule 3: Nothing else is a regular expression.

regular set

- **Basis** : ϕ , { λ } and {a}, for every $a \in \Sigma$ are regular sets over Σ .
- Recursive step: Assume X and Y are regular set over Σ , then the sets:

X \cup Y, XY and X*

are regular sets over Σ

• **Closure**: X is a regular set over \sum iff it can be obtained from basis elements by a finite number of applications of ecursive step.

 We use parentheses () as an option to eliminate the ambiguity when we apply * or ⁺ to the expressions. For example:

<u>Ans.</u> the later choice. In this case we should put the () when we substitute $aa \cup b$ to r_1^*

- ϵ or λ is the symbol of null string in regular expression.
- \varnothing is the symbol for "Null Language"
- Don't confuse!
 - $R = \lambda$ represents the language containing a single string, the empty string. $rightarrow \{\lambda\}$
 - R = Ø represents the language that doesn't contain any strings.

- If we let R be any regular expression,
 - $R \cup \emptyset = R:$

Adding the empty language to any other language will not change it.

 $- R \circ \mathcal{E} = R$:

Adding the empty string to any other language will not change it.

– $R \cup E$ may not equal to R

e.g., if R = 0, the L(R) = $\{0\}$ but L(R \cup E) = $\{0, E\}$

 $- R \circ \emptyset$ may not equal to R

e.g., if R = 0, the L(R) = {0} but L(R $\circ \emptyset$) = \emptyset

 Let consider the language defined by (a∪b)*a(a∪b)*

What does it produce ?

<u>Ans.</u>

The language which is the set of all words over the alphabet $\Sigma = \{a,b\}$ that have an a in somewhere. Only words which are not in this language are those that have only b's and the word \mathcal{E}

 Those words which compose of only b's are defined by the expression b*.

(b* also includes the null string ε)

• Therefore, the language of all strings over the alphabet $\Sigma = \{a, b\}$ are

all strings = (all strings with an a) \cup (all string without an a)

 $(\mathbf{a} \cup \mathbf{b})^* = (\mathbf{a} \cup \mathbf{b})^* \mathbf{a} (\mathbf{a} \cup \mathbf{b})^* \cup \mathbf{b}^*$

 How can we describe the language of all words that have at least 2 a's ?

Ans

 $(a \cup b)^*a (a \cup b)^*a (a \cup b)^*$

= (some beginning)(the first a)(some middle)(the second a)(some end)

where the arbitrary parts can have as many a's (or b's) as they want.

 Is there any other RE that can define the language with at least 2 a's ?

Ans. Yes. For example:

$b^*ab^*a(a\cup b)^*$

=(some beginning of b's (if any))(the first a)
 (some middle of b's)(the second a) (some
 end)

ocw.utm.my

$(\mathbf{a} \cup \mathbf{b})^* \mathbf{a} (\mathbf{a} \cup \mathbf{b})^* \mathbf{a} (\mathbf{a} \cup \mathbf{b})^* = \mathbf{b}^* \mathbf{a} \mathbf{b}^* \mathbf{a} (\mathbf{a} \cup \mathbf{b})^*$

Both expressions are **equivalent** because they both describe the same item. We could write

language (($a \cup b$)*a ($a \cup b$)*a ($a \cup b$)*)

- = language(b*ab*a(a\b)*)
- = all words with at least two a's
- $= (a \cup b)^*ab^*ab^*$
- $= b^*a(a \cup b)^* ab^*$

• If we wanted all words with exactly 2 a's, we could use the expression

b*ab*ab*

it can describes such words as

```
aab, baba, bbbabbab, ...
```

Question: Can it make the word aab?

Ans : Yes, by having the first and second

$$b^* = \lambda$$

 How about the language with at least one a and at least one b ?

(a∪b)*a (a∪b)*b (a∪b)*

It can only produce words which an a precede ab. To produce words which have ab precede an a, we can describe by

(a∪b)*b(a∪b)*a (a∪b)*

Thus, the set of all words :

(a∪b)*a (a∪b)*b (a∪b)*∪ (a∪b)*b (a∪b)*a (a∪b)*

- (a∪b)*a (a∪b)*b (a∪b)* can produce all words with at least one a and at least one b,
- However, it doesn't contain the words of the forms some b's followed by some a's.
- These exceptions are all defined by bb*aa*
- Thus, we have all strings over $\Sigma = \{a, b\}$

 $(a \cup b)^*a (a \cup b)^*b (a \cup b)^* \cup (a \cup b)^*b (a \cup b)^*a (a \cup b)^*$ = $(a \cup b)^*a (a \cup b)^*b (a \cup b)^* \cup bb^*aa^*$

(a \cup b)*a (a \cup b)*b (a \cup b)* \cup bb*aa*

- generates all words which have both a and b in them somewhere.
- Words which are not included in the above expression are words of all a's, all b's or ε ⇒a*, b*
- Now, we have all words which can be generated above the alphabet

 $(a \cup b)^* = (a \cup b)^*a (a \cup b)^*b (a \cup b)^* \cup bb^*aa^* \cup a^* \cup b^*$

References