OPENCOURSEWARE



# Theory of Computer Science – SCJ 3203

## Introduction

#### Mohd Soperi Mohd Zahid Sazali Abd Manaf



innovative • entrepreneurial • global

ocw.utm.my







- Overview of:
  - Automata Theory
  - Complexity Theory, and
  - Computability Theory
- Mathematical Preliminaries





#### Automata Theory

- deals with the definitions and properties of mathematical models of computation.
  - Finite Automata (FA) used in text processing, compilers and hardware design.
  - Context-free Grammar (CFG) used in programming languages and artificial intelligence.





# **Complexity Theory**

- Computer problems :
  - − easy ⇒ sorting
  - − hard ⇒ scheduling
- What makes some problems computationally hard and others easy ?
- We don't know what make them easy and hard but we know how to classify each problems with an elegant scheme.
  - Cryptography is supposed to be a hard problem.





#### Computability Theory

- There are some problems which can't be solved by computers, e.g., determining whether a mathematical statement is true or false.
- The object of the Computability Theory is to classify the problems whether they are solvable by computers or not.





# Mathematical Notions and Terminology Used

- Sets
- Functions and Relations
- Sequences and Tuples
- Trees
- Strings and Languages
- Boolean Logic
- Proof Techniques





Sets

- Importance: languages are sets
- A set is a collection of "things," called the elements or members of the set. It is essential to have a criterion for determining, for any given thing, whether it is or is not a member of the given set. This criterion is called the membership criterion of the set.







- There are two common ways of indicating the members of a set:
  - List all the elements, e.g. {a, e, i, o, u}
  - Provide some sort of an algorithm or rule, such as a grammar







- Notation:
  - To indicate that x is a member of set S, we write  $x \in S$
  - We denote the empty set (the set with no members) as {}
     or Ø
  - If every element of set A is also an element of set B, we say that A is a subset of B, and write A ⊆ B
  - If every element of set A is also an element of set B, but B also has some elements not contained in A, we say that A is a proper subset of B, and write  $A \subset B$





#### **Operations on Sets**

- The union of sets A and B, written
   A ∪ B, is a set that contains everything that is in A, or in B, or in both.
- The intersection of sets A and B, written A 

  B, is a set that contains exactly those elements that are in both A and B.





#### **Operations on Sets**

- The set difference of set A and set B, written A B, is a set that contains everything that is in A but not in B.
- The complement of a set A, written as -A or (better) A with a bar drawn over it, is the set containing everything that is not in A. This is almost always used in the context of some universal set U that contains "everything" (meaning "everything we are interested in at the moment"). Then -A is shorthand for U - A.





# Additional terminology

- The cardinality of a set A, written |A|, is the number of elements in a set A.
- The powerset of a set Q, written 2Q, is the set of all subsets of Q. The notation suggests the fact that a set containing n elements has a powerset containing 2n elements, including empty set.
- Two sets are disjoint if they have no elements in common, that is, if  $A \cap B = \emptyset$ .





#### Sequences and Tuples

- A sequence of objects is a list of those objects in some order.
- Usually designate by writing the list within parenthesis, e.g. (3,2,5).
- may be finite or infinite.
- finite sequences called tuples.
- sequence with k elements is a k-tuple, e.g., (3,2,5) is a 3-tuple.



# Cartesian product (Cross product)

 If A and B are two sets, the Cartesian product of A and B, written A x B, is the set of all pairs wherein the first element is a member of A and the second element is a member of B.





### **Relations and Functions**

- Importance: need basic familiarity with the terminology
- A relation on sets S and T is a set of ordered pairs (s, t), where
  - $s \in S$  (s is a member of S),
  - $-t \in T$ ,
  - S and T need not be different,
  - The set of all first elements (s) is the domain of the relation, and
  - The set of all second elements is the range of the relation.





#### Trees

- Importance: Trees are used in some algorithms.
- A tree is a kind of digraph:
  - It has one distinguished vertex called the root;
  - There is exactly one path from the root to each vertex; and
  - The level of a vertex is the length of the path to it from the root.





#### Trees

- Terminology:
  - if there is an edge from A to B, then A is the parent of B, and B is the child of A.
  - A leaf is a node with no children.
  - The height of a tree is the largest level number of any vertex.





### **Boolean Logic**

- AND (conjunction)  $\wedge$
- OR (disjunction)  $\lor$
- NOT (negation) —
- XOR (exclusive or)  $\oplus$
- Equality ↔ : 1 if both of its operands have the same value.
- Implication → : 0 if its first operand is 1 and the second operand is 0; otherwise 1.





# **Proof techniques**

- Construction
  - Prove a "there exists" statement by finding the object that exists
- Contradiction
  - Assume the opposite and find a contradiction
- Induction
  - Show true for a base case and show that if the property holds for the value k, then it must also hold for the value k + 1





# **Proof by Construction - Example**

- A graph is k-regular if all vertices has degree k
- Proof the following theorem:
  - For all even numbers n > 2, there exists a 3-regular graph with n nodes.
- Strategy:
  - Find such graph, G by providing formal description of it:

$$- V = \{0, 1, ..., n-1\}$$

 $\begin{array}{l} - \ E = \{ \{i, i{+}1\} \mid for \ 0 \leq i \leq n{-}2 \ \} \cup \{ \{n{-}1, 0\} \} \cup \{ \{i, i + n/2\} \\ \mid 0 \leq i \leq n/2 \ {-}1 \ \} \} \end{array}$ 





# **Proof by Contradiction - Example**

- A number is rational if it is a fraction m/n where m and n are integers (e.g. 2/3 is a rational number, 4/6 is irrational)
- Proof that  $\sqrt{2}$  is irrational.
- Strategy:
  - Assume that  $\sqrt{2}$  is rational:  $\sqrt{2} = m/n$
  - When m/n is rational, both m and n cannot be even numbers
  - $n\sqrt{2} = m$ ,  $2n^2 = m^2$  by squaring both sides
  - so  $m^2$  is an even number and can be written as 2k, proceed!





# Proof by induction - Example

- Theorem: A binary tree with n leaves has 2n 1 nodes
- Proving the theorem by induction:
  - <u>Basis</u>: Compute number of nodes for a binary tree with one leave.
  - <u>Induction step</u>:
    - Assume the theorem is true for binary trees with number of leaves, n ≥ 1
    - Compute the number of nodes for case of n + 1





