Theory of Computer Science SCJ 3203

Introduction

Mohd Soperi Mohd Zahid
Sazali Abd Manaf

Outline

- Overview of:
- Automata Theory
- Complexity Theory, and
- Computability Theory
- Mathematical Preliminaries

Automata Theory

- deals with the definitions and properties of mathematical models of computation.
- Finite Automata (FA) used in text processing, compilers and hardware design.
- Context-free Grammar (CFG) used in programming languages and artificial intelligence.

Complexity Theory

- Computer problems :
- easy \Rightarrow sorting
- hard \Rightarrow scheduling
- What makes some problems computationally hard and others easy?
- We don't know what make them easy and hard but we know how to classify each problems with an elegant scheme.
- Cryptography is supposed to be a hard problem.

Computability Theory

- There are some problems which can't be solved by computers, e.g., determining whether a mathematical statement is true or false.
- The object of the Computability Theory is to classify the problems whether they are solvable by computers or not.

Mathematical Notions and Terminology Used

- Sets
- Functions and Relations
- Sequences and Tuples
- Trees
- Strings and Languages
- Boolean Logic
- Proof Techniques

Sets

- Importance: languages are sets
- A set is a collection of "things," called the elements or members of the set. It is essential to have a criterion for determining, for any given thing, whether it is or is not a member of the given set. This criterion is called the membership criterion of the set.

Sets

- There are two common ways of indicating the members of a set:
- List all the elements, e.g. $\{a, e, i, o, u\}$
- Provide some sort of an algorithm or rule, such as a grammar

Sets

- Notation:
- To indicate that x is a member of set S, we write $x \in S$
- We denote the empty set (the set with no members) as \{\} or \varnothing
- If every element of set A is also an element of set B, we say that A is a subset of B, and write $A \subseteq B$
- If every element of set A is also an element of set B, but B also has some elements not contained in A, we say that A is a proper subset of B, and write $A \subset B$

Operations on Sets

- The union of sets A and B, written
$A \cup B$, is a set that contains everything that is in A, or in B, or in both.
- The intersection of sets A and B, written $A \cap$ B, is a set that contains exactly those elements that are in both A and B.

Operations on Sets

- The set difference of set A and set B, written $A-B$, is a set that contains everything that is in A but not in B.
- The complement of a set A , written as -A or (better) A with a bar drawn over it, is the set containing everything that is not in A. This is almost always used in the context of some universal set U that contains "everything" (meaning "everything we are interested in at the moment"). Then -A is shorthand for U - A .

Additional terminology

- The cardinality of a set A, written $|A|$, is the number of elements in a set A.
- The powerset of a set Q, written $2 Q$, is the set of all subsets of Q . The notation suggests the fact that a set containing n elements has a powerset containing $2 n$ elements, including empty set.
- Two sets are disjoint if they have no elements in common, that is, if $\mathrm{A} \cap \mathrm{B}=\varnothing$.

Sequences and Tuples

- A sequence of objects is a list of those objects in some order.
- Usually designate by writing the list within parenthesis, e.g. $(3,2,5)$.
- may be finite or infinite.
- finite sequences called tuples.
- sequence with k elements is a k-tuple, e.g., $(3,2,5)$ is a 3 -tuple.

Cartesian product (Cross product)

- If A and B are two sets, the Cartesian product of A and B, written $A \times B$, is the set of all pairs wherein the first element is a member of A and the second element is a member of B.

Relations and Functions

- Importance: need basic familiarity with the terminology
- A relation on sets S and T is a set of ordered pairs (s,
t), where
$-s \in S$ (s is a member of S),
$-\mathrm{t} \in \mathrm{T}$,
$-S$ and T need not be different,
- The set of all first elements (s) is the domain of the relation, and
- The set of all second elements is the range of the relation.

Trees

- Importance: Trees are used in some algorithms.
- A tree is a kind of digraph:
- It has one distinguished vertex called the root;
- There is exactly one path from the root to each vertex; and
- The level of a vertex is the length of the path to it from the root.

Trees

- Terminology:
- if there is an edge from A to B, then A is the parent of B, and B is the child of A.
- A leaf is a node with no children.
- The height of a tree is the largest level number of any vertex.

Boolean Logic

- AND (conjunction) \wedge
- OR (disjunction)
- NOT (negation)
- XOR (exclusive or) \oplus
- Equality $\leftrightarrow: 1$ if both of its operands have the same value.
- Implication \rightarrow : 0 if its first operand is 1 and the second operand is 0 ; otherwise 1.

Proof techniques

- Construction
- Prove a "there exists" statement by finding the object that exists
- Contradiction
- Assume the opposite and find a contradiction
- Induction
- Show true for a base case and show that if the property holds for the value k, then it must also hold for the value $k+1$

Proof by Construction - Example

- A graph is k-regular if all vertices has degree k
- Proof the following theorem:
- For all even numbers $n>2$, there exists a 3-regular graph with n nodes.
- Strategy:
- Find such graph, G by providing formal description of it:
$-\mathrm{V}=\{0,1, \ldots, \mathrm{n}-1\}$
$-\mathrm{E}=\{\{\mathrm{i}, \mathrm{i}+1\} \mid$ for $0 \leq \mathrm{i} \leq \mathrm{n}-2\} \cup\{\{\mathrm{n}-1,0\}\} \cup\{\{\mathrm{i}, \mathrm{i}+\mathrm{n} / 2\}$ $\mid 0 \leq \mathrm{i} \leq \mathrm{n} / 2-1\}\}$

Proof by Contradiction - Example

- A number is rational if it is a fraction m / n where m and n are integers (e.g. 2/3 is a rational number, $4 / 6$ is irrational)
- Proof that $\sqrt{ } 2$ is irrational.
- Strategy:
- Assume that $\sqrt{ } 2$ is rational: $\sqrt{ } 2=\mathrm{m} / \mathrm{n}$
- When m / n is rational, both m and n cannot be even numbers
$-\mathrm{n} \sqrt{2}=\mathrm{m}, 2 \mathrm{n}^{2}=\mathrm{m}^{2}$ by squaring both sides
- so m^{2} is an even number and can be written as 2 k , proceed!

Proof by induction - Example

- Theorem: A binary tree with n leaves has $2 n-1$ nodes
- Proving the theorem by induction:
- Basis: Compute number of nodes for a binary tree with one leave.
- Induction step:
- Assume the theorem is true for binary trees with number of leaves, $\mathrm{n} \geq 1$
- Compute the number of nodes for case of $n+1$

References

