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Learning Objectives

When | complete this chapter, | want to be able
to do the following:

1. Analyze the response of complex systems
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Poles and Zeros; Their Effect on System
Response

The dynamic behavior of a transfer function model can be
characterized by the numerical value of its poles and zeros.

Consider a particular transfer function,
K
8.1
s(z,5+1)\z28> +2£7,5+1) 8.1)
where 0<{<1. Using the principle of partial fraction expansion followed by

the inverse transformation operation, the response of the system to any
input will contain the following functions of time:

Ge) =

A constant term resulting from the s factor
An e/ term resulting from the (t;s+1) factor

\
/ 2
e %" sin 1=¢ t
nd 7, ) terms resulting from the (1-2252 + 24’2-25 + ]) factor
1_ 2
S cos—gt /

(3
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Poles and Zeros; Their Effect on System
Response

* Each of the above response modes is determined from the factors of the
denominator polynomial:

s, =0
|
S, = ——
(4
AJ1=C7
33__£+J ¢ (82)
&) 3
AJ1=C7
54—_£_J 3
3} &)

m Control engineers refer to the values of s that are roots of the characteristic
equation as poles of transfer function G,

= Sometimes it is useful to plot the roots (poles) and to discuss process response
characteristics in terms of root locations in the complex s plane.

m Pole at the origin (1/s term in TF model): results in an “integrating process”
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Summary: Effect of Poles and Zeros Locations

1. Poles

m Pole in “Right Hand Plane (RHP)” : results in unstable system (i.e., unstable step

responses) . :
» Imaginary axis
X
: X = unstable pole
p=a+Dbj | P
X% » Real axis

(1471

X

m  Complex pole: results in oscillatory responses
» Imaginary axis

X = complex poles

» Real axis
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Summary: Effect of Poles and Zeros Locations

2. Zeros

Note: Zeros have no effect on system stability.

e Zeroin RHP: results in an inverse response to a step change in the input

+ Imaginary axis

Real
> : y

AV4
N

axis

inverse
response

e Zero in left half plane: may result in “overshoot” during a step response.
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Inverse Response Due to Two Competing Effects

K,

Tl-ﬂ"l“l

U(s)

K3

1-23-1-1

Two first order process
The transfer function can be expressed as

Yo _ K K
X(S) TIS+1 T25+1

Y(s)
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Inverse Response Due to Two Competing Effects

e After rearranging the numerator into standard gain/time constant form,

we have
(K, + Kz)( Kir, Ko7, S +1)
Y(S) K, +K,

— 8.3
Xe) (r,5+1)z,5+1) (83)
m Equation 8.3 can be put into the form of
Klz,s+1
(Z'IS +1)(rzs +1)
if
K=K, +K,

_ Kz, +K,r, Kz, + K,

Ta
K, +K, K



ocw.utm.my ©UIM

Inverse Response Due to Two Competing Effects

e The condition for an inverse response to exist is T, < 0 or

K.z, + K,z
K

<0

m For either positive or negative K, expression above can be arranged to
convenient form



ocw.utm.my @UTM

LR PETLON B STB

Time Delays

Time delays occur due to:
1.  Fluid flow in pipe
2. Transport of solid material (e.g., conveyer belt)
3. Chemical analysis
— Sampling line delay
— Time required to do the analysis (e.g., on-line gas chromatograph)

Mathematical description:

A time delay, 6, between an input u and an output y results in the following

expression:
10 for t<@
Yo = x(t—0) for t>6

The transfer function of a time delay of 0 units is given by

— G(s) = e_gs (86)
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Time Delays: effect of a pure time delay

Input U(z)
or
Output y(t)

input output

0 Time

11
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Time Delays: Polynomial Approximations to €

For purposes of analysis using analégical solutions to transfer functions,

polynomial approximations for @ =" :are commonly used. Example:

simulation software such as MATLAB and MatrixX.

Two widely used approximations are:

1. Taylor Series Expansion:

g°s> 0’s’ 0's* 6’s
-4 4 (8.7)
2! R 4! 5!
The approximation is obtained by truncating after only a few terms.

e®=1-6+

2. Padé Approximations:

Many are available. For example, the 1/1 approximation is,

e g (8.8)

0s .
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Interacting vs Noninteracting Processes

e Consider a process with several invariables and several output variables.
The process is said to be interacting if:

— Each input affects more than one output.
. or

— A change in one output affects the other outputs.

— Otherwise, the process is called noninteracting.

As an example, we will consider the two liquid-level storage systems.

In general, transfer functions for interacting processes are more
complicated than those for noninteracting processes.
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Interacting vs Noninteracting Processes

Fi

|
e

Fy
L |
”V\/\/\/\TJ\r\/\ 1 J
System 1 f J F2 J F
-
System 2
System 1. A noninteracting System 2. Two tanks in series

SYStem: two surge tanks in series. whose ||qu|d levels interact.
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mlw Noninteracting Process
\ System 1. A noninteracting
MMT\M system: two surge tanks in series.
System 1 ]
HI,(S) _ R1 _ K1 Hé(s) — R2 _ K2
Q) AR+l 75+1 Qi AR+ 7,5+1

Hiy R K i R K,
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Noninteracting Process

The transfer function relating q, and g, can be derived by:

Qus) _ Qo) Ha) Qi) Hags)
Qi) Hap) Qus) His) Qs

or
Qe _1 K, 1 K

Qi’(s) Kz T25+1 Kl 'Z'IS+1

Which can be simplified to yield

Qi’(s) (TIS + 1)(2'23 + 1)
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Interacting Process

|
R

h, h,

.
>

A R Y O B

System 2

The transfer functions for the interacting system are:

Hae) _ R,

— = where
Qi(s) T°S"+ 215 +1 T =4/7,7,
Q;(s) _ 1 5271+72+R2A1
Q) 778" +2{rs+1 277,

Hiy _ Kiles+) ;. RRoA
Qe 7°5°+2¢7s5+1 R +R,
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Model Comparison

m  Noninteracting system
Qus) 1

Qi’(s) B (715"'1)(725"’1)
where 7. = AR, and 7, = AR,

m Interacting system

Qi’(s) B 2'252 +2§TS +1

where ¢ >1 and 2'21/2'12'2

General Conclusions

1. The interacting system has a slower response.
(Example: consider the special case wheret=t,=t,.)

2. Which two-tank system provides the best damping of inlet flow disturbances?
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