I
]
<

E
;

i
G
™

¢

[
-
o

SKF 3143
Process Control and Dynamics:
Response of Second Order Systems

Mohd. Kamaruddin Abd. Hamid, PhD

kamaruddin@cheme.utm.my

www.cheme.utm.my/staff/kamaruddin




ocw.utm.my

Learning Objectives

When | complete this chapter, | want to be able
to do the following:

1. Analyze the response of the second order
systems
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Second-Order Systems

A second-order transfer function can arise physically whenever two first-order
processes are connected in series.

For example, two stirred-tank heaters, each with first-order transfer function relating
inlet to outlet temperature, might be physically connected so the outflow stream of
the first heater is used as the inflow stream of the second tank.

Xs X (s Yis
L» K4/tis+1 { )> Ko/t,s+1 ( )>
Here
Yis) KK, K

G(s) = = = (71)

Xs) (o5 +1)7,5+1)  (z5+1)z,5+1)

In this chapter we consider the case where the second-order transfer function has
the standard form

K
G .\ = 7.2
(5) 7 1242 +2075+1 ( )

Where ( (zeta)= damping coefficient (dimensionless)
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Second-Order Systems

 The type of behavior that occur depends on the numerical value of
damping coefficient, T

It is convenient to consider three types of behavior:

Damping Types of Response Root of Characteristic
Coefficient Polynomial
(> 1 Overdamped Real and unequal
(=1 Critically damped Real and equal
0<(<1 Underdamped Complex conjugates

=  What about { < 07 It results in unstable system

= The characteristic polynomial is the denominator of the transfer
function:

r°s° +2¢1s +1
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Second-Order Systems

The transfer function given by Egs. 7.1 and 7.2 differ only in the
denominators.

Equating them yields the relation between the two alternative forms for
the overdamped second-order case.

Note that when (> 1, the denominator of 7.2 can be factored as:
r%28% + 2415 +1= (7,5 +1) 1,5 +1) (7.3)

Expanding the right side of 7.3 and equating coefficients of the s terms,
yields

T 7,7,

20t =1,+7,
from which we obtain

T =4/7,T,

= T, +7,

2./ 7,7,
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Second-Order Systems

e Alternatively, the left side of 7.3 can be factored:

7S 7S
r°s° +2(rs+1= +1 +1
[5—\/52—1 J{?Jﬂ/?z—l J

from which expression for t, and 1, are obtained

L= g—\/fg”zj (é/ 21) (7'5)
7, d (¢21) (76

ot
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Response of Second-Order Systems

Step Response

e For the step input with transform:

KM
Y |\ = 7.7
(s) S(TZSZ + 2078 +1) ( )

= After some manipulation, and inverting to the time domain, three forms
of response are obtained:

Casea (> 1)
If the denominator of Eq. 7.7 is factored using Eqs. 7.5 and 7.6, then the

response can be written
e I

Yi) = KM|1-
Lh=70
If the denominator of Eq. 7.7 is left unfactored, then the response can be
written in the equivalent form

Yo = KM {1—eﬂ/{cosh£ e” _1t]+ ] sinh{ & _1’[]} (7.9)
T 1_52 T
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Response of Second-Order Systems

T

Caseb ({=1) ¢
Y = KM {1_(“)6@ (7.10)

Casec(0=<(<1)

T

Yy = KM<1-e cos[“l_gzt]+ ] sin[ 1-¢ tJ (7.12)

Several general remarks can be made concerning the responses shown in Figs. 7.1
and 7.2:

1.

Responses exhibiting oscillation and overshoot (y/KM > 1) are obtained only
for values of ( less than one.

Large values of ( yield a sluggish (slow) response.

The fastest response without overshoot is obtained for the critically damped
case (( = 1).



Step response of underdamped second-

order systems
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Step response of critically-damped and

overdamped second-order systems
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Response of Second-Order Systems

e Control system designers often attempt to make the setpoint step
response of the controlled variable approximate the step response of
underdamped second-order system.

 That is, make it exhibit a prescribed amount of overshoot and oscillation
as it settles at the new operating point.

* Values of Cin the range 0.4 to 0.8 often are suitable for specifying a
desired control system response, assuming that it can be approximated as
an underdamped second-order system.

e Inthis range, the controlled variable y reaches the new operating point
faster than with (=1 or 1.5, but the response is much less oscillatory (it
settles faster) than with ¢ =0.2.
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Performance characteristics for the step

response of an underdamped process.

tr tp ts
¢
Underdamped Second Order Response



ocw.utm.my ©UIM

Response of Second-Order Systems

1. Rise Time. t,is the time the process output takes to first reach the new
steady-state value.

2. 2. Time to First Peak. t is the time required for the output to reach its
first maximum value.

3. Settling Time. t. is defined as the time required for the process output
to reach and remain inside a band whose width is equal £5% of the total
change in y. The term 95% response time sometimes is used to refer to
this case. Also, values of +1% sometimes are used.

Overshoot. OS = a/b (% overshoot is 100a/b).
5. Decay Ratio. DR = c¢/a (where cis the height of the second peak).

6. Period of Oscillation.P is the time between two successive peaks or two
successive valleys of the response.
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