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Learning Objectives

When | complete this chapter, | want to be able
to do the following:

1. Analyze the response of the first order
systems
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Response of First-Order Systems

e The dynamic response of many processes and control system
components can be represented by linear first-order differential
equations.

e We refer to these processes as first-order systems.

 This section presents the response of first-order systems to three
different types of input signals: a step function, a ramp, and a sine
wave.

 The objective is to learn how the parameters of first-order systems
affect their response so that later we can infer the important
characteristics of the response of a system by simply examining its
transfer function.

e First-order systems are also important because many higher-order
systems can be treated as combinations of first-order systems in
series and parallel.
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Response of First-Order Systems

e Consider the linear first-order differential equation:
2, Yo
dt

where y is the output or dependent variable; x is the input variables; t is time, the
independent variable; and the parameters a,, a,, b, and c are constant.

e We can write the equation at the initial steady-state.
ao y(O) — bX(O) +C (62)
* Note that this equation establishes a relationship between the initial values of x
and y. Subtracting Eqg. 6.2 from Eq. 6.1 results in

dy,
a1 d—](:t) + aOY(t) — bX(t) (63)

where

+ ao y(t) = bX(t) +C (61)

Y(t) — y(t) — Y(o) are the deviation variables.
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Response of First-Order Systems

 Eq.6.3isthe general linear first-order differential equation in terms of
the deviations of the input and output variables from their initial steady-
state values.

e In process control it is customary to divide by the coefficient of the
output variable, a,.

e Such an operation results in the following equation called the standard
form of the linear first-order differential equation.

Mo 4y, - kx
T 0T ™M
K
Yo =| —— |X
) LHJ ()

where
is the time constant

|

b . :
K= ~ is the steady-state gain
0



ocw.utm.my @U ™

Step Response

To obtain the step response of magnitude Ax, we let X, =Ax. The
transform of the input is X =Ax/s. Substitute this to the equation of
standard transfer function

K AX KAX
Y(S) j— j—
s+1s  s(ss+1)
The time constant associated with this system is t=1/a. The time constant
tells how quickly the system responds.

For example, if a=1, then the system responds on the order of t=1
second; however, if a=100, then the system responds on the order of
7=0.01 seconds.

So, systems that respond quickly have large values of a, and systems that
respond slowly have small values of a.

The 2% settling time for a first order system is T.= 4t = 4/a.

This represents the amounts of time required for the system to reach and
stay within 2% of the final value.
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Step Response

The plot below shows the step response for three different systems with
a values of 0.5, 1, and 5. All systems attain a final value of 1, but note
that the system with a=5, attains that value more quickly than the other
two, and the system with a=0.5 attains that value more slowly than the
other two. The 2% settling times for the three system are 4/5, 4, and 8
seconds respectively.

Step Response

Amplitude

1 1 1 1 1 1 1 d 1
a 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec.)
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Ramp Response

e Arampis alinear increase in the input with time starting at time zero.
* The input function is given by X, =at. The Laplace transform is X(S)za/sz.

e Substitute this to the equation of standard transfer function and
performing a partial fraction expansion yields

K a a,
Y(S) — 2 — + +
s+1s° +1 s s
 The Heaviside expansion gives

Kar? Kar Ka

a, O

2

Y, | =
7 511 s s
e Inverting yields

Vi) = Kar(e_% —1) + Kat

 The above expression has the interesting property that for large values of

time (t>>71) y(t) ~ Ka(t _ Z')
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Sinusoidal Response

Processes are also subjected to periodic, or cyclic, disturbances. They can
be approximated by a sinusoidal disturbance:

. 0 for t<O
) Asin(wt)  for t>0

where: A = Amplitude, w =angular frequency
KAw
Yo =

(zs +l)(s2 + a)z)

KA® ( o1’ SoT 0, j

= - +
(s+1)s* +0* |\ 5+1 P+ P+
Hence KA
= o™ —wrcoswt +sin ot
Yo 0°T° +1( )

or, by using trigonometric identities,
KAwr -V
Yiy = e+

KA
0’t? +1 Jat? +1

sin(at + ¢)
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Response of Integrating Process Units

Consider the model of liquid-level system with a pump attached to the
outflow line.

Assuming that the outflow rate g can be set at any time by the speed of the
pump or by the valve in the effluent line:

A dh(t) _ _
at i) — Yo
After subtracting the steady-state version of equation above,
dh
dt - ql q t

Taking Laplace transforms
SAH ;) = Qi) — Q)
1
Hr — o  —_0
5= As Qi ~ Qi

Both of the transfer functions representing integrating units, characterized
by the term 1/s.

and rearranging gives
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