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Learning Objectives

When | complete this chapter, | want to be able
to do the following:

1. Develop transfer function of process control
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Transfer Function

 Transfer function = G(s)
= Laplace Transform of output variables in deviation form
Laplace Transform of input variables in deviation form

e |t describes completely the dynamic behaviour of the output when the
corresponding input changes are given.

K = steady-state gain
7= system time constant



ocwutm.my ©UIM

Input-Output Model

e For a system with a single input and a single output, the dynamic
behaviour of the process us described by an n th order linear differential

equation
_f(t) »| Process v > F(s) »  G(s) Yes) >
input output
dny dn—l y
a +a +a, —+a,y = bf (t
n dtn n-1 dtn_l a“l t Oy ( )
d d2 dn—l
y(0)=[d—y} ) 2| =0
t i, dt 0 dt 0
Y(s) b
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Process With Two Inputs

e For a dynamic model of two inputs f,(t) and f,(t)

n n-1

d
+...+a1d—¥+aoy = bl fl(t)+b2 fZ(t)

b,
n n-1
as +a, S +---+aS+a,

Yio) = - Fys) +

fa(t) F4(s)

| I
q N e '
G(s) yo | 1) <> | Y(s)
> | i >
fa(t) | X Gas) |
| I
|

Fa(s)

— —— — —— —— —— —— — —— —— — — — —)
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Development of Transfer Function

e Consider a simple first-order differential
equation derived for the stirred-tank heating

system: dal

vd—TzF(Ti—T)+i l
dt o, O W«T
e Assume volume of the tank is constant, :
therefore F, = F. The value of p and C, are also l\/‘>\7\’4 J -
constant. >~
e At time zero the system is at its steady state; l Condensate

hence T(0)=0.

e Taking the Laplace transform of both sides of
the equation, we have

VL(d—sz |_[|:(Ti —T)+p(§}

dt p

Fst

Steam
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Development of Transfer Function

VL( ‘E ) FL(T,)- FL(T )+pcip L(Q)

e The constant has been factored out of the transform. Since T(t),
T.(t), and Q(t) are unspecified, their transforms can be expressed in
a general manner:

1
VsT,, = FT,,,—FT, +—Q,
O A

 Rearranging gives P

1
Vs+F T = —
(Vs + ot Q)

M (iﬁi]
il
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Development of Transfer Function

Ts) = Gy Tigs) + G5 Q)

* Gy, and Gy are called transfer functions.

* Gy relates the input T, to the output T,); G, has similar role for
input Q.

T _ Gl( = 1 K, :\i
Ti(s) \%: s+1 T, :E
1
T _g _ %mp K; =
=Gy =y FoC,
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Step Changed Input

At steady-state

S V V S
/ s+1 %:s+1
Assume the inlet temperature is held constant (T, =T), then T, ,=0.

Suppose the heat input is changed by a step input at t=0 from its value of
Q to a new value, Q+AQ. Therefore, Q'=AQ for t>0.

Use Table 3.1 to obtain Q’,=AQ/s

e,
Vi

S

s+1| S

Observe form Table 3.1 that T’ ) corresponds to the time domain function

T/ = KAQ 1—6_% _ 1 AQ 1—6_F% Steady-state response
(t) F,OC

P
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Properties of Transfer Functions

Additive Property

A general form is
X3 =Gy Xy5) + Gy6) X 5ps)

X1(s) ———] Gy
}— X3(S)
X2(s)—> GZ(s)
In figure above observe that a single process output variable (X,)

may be influenced by more than one input (X; and X,) acting singly
or together.

In such a case the total output change is calculated by summing
the individual input contributions in the s-domain before inverting
to the time domain.

In the case, X3 is the composite output response that results from
both input dynamic effects, X, and X,).
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Properties of Transfer Functions

Multiplicative Property

Transfer function also exhibit a multiplicative property for
sequential processes or process elements.

Suppose two processes with transfer functions G; and G, are
placed in series.

The input Xy to G, yields an output X,,, which is the input to G,.
The output from G, is X,.

In equation form Xz( = Gl( )Xl( )
Xa(s) = Goe)X 25) = G2(5)Gus) X o)

Xas)

X (8) ——pi Gy (s) > G2(s) ' X3(S)

In other words, the transfer function between the original input X,
and the output X; can be found by multiplying G, by G;.
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Linearization

We must convert the rigorous nonlinear differential equations
describing a chemical system into linear differential equations so
that we can use the powerful linear mathematical techniques.

What is a linear differential equation?

Basically, it is one that contains variables only to the first power in
any one term of the equation.

If square roots, squares, exponentials, products of variables, etc.
appear in the equation, it is nonlinear.

Linear example:

dx
a1 E + aOX — f(t)

where a, and a, are constants or functions of time only, not of
dependent variables or their derivatives.
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Linearization

* Nonlinear examples:

dx
aia‘FaOXO'S = f(t)

dx
alaJr ao(x)2 = fy

dx y
alE‘Faoe — f(t)

dx,

a ’n + 8y Xy Xo) = Ty
t

where x, and x, are both dependent variables.

e Mathematically, a linear differential equations is one for which the
following two properties hold:

If X, is a solution, then cx, is also a solution, where c is a constant.
2. If x, is a solution and x, is also a solution, then x,+x, is a solution.
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Linearization

e Linearization is quite straightforward.

e All we do is take the nonlinear functions, expand them in Taylor
series around the steady-state operating level, and neglect all
terms after the first partial derivatives.

e Lets assume we have a nonlinear function f of the process
variables x, and x,: f(x,x,).

* For example, x, could be mole fraction or temperature or flow rate.

 We will denote the steady-state values of these variables by using
an overscore:

x, = steady-state value of x;

X, = steady-state value of x,
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Linearization

* Now we expand the function f,, ,,, around its steady-state value

o tr{ 2] (2]

Xl,XZ)

e Linearization consists of truncating the series after the first partial
derivatives.

o= e ) bS] e

X1,X2)

e We are approximating the real function by a linear function.
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Linearization

f(x)= f(xg) + (df/dx),5(x-%g)

16
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