

SKF 3143

Process Control and Dynamics: Transfer Function

Mohd. Kamaruddin Abd. Hamid, PhD

kamaruddin@cheme.utm.my

www.cheme.utm.my/staff/kamaruddin

Innovative.Entrepreneurial.Global

ocw.utm.my

Learning Objectives

When I complete this chapter, I want to be able to do the following:

1. Develop transfer function of process control

Transfer Function

• Transfer function = G(s)

= <u>Laplace Transform of output variables in deviation form</u> Laplace Transform of input variables in deviation form

• It describes completely the dynamic behaviour of the output when the corresponding input changes are given.

$$G_{(s)} = \frac{K}{\tau s + 1}$$

K = steady-state gain τ = system time constant

Input-Output Model

 For a system with a single input and a single output, the dynamic behaviour of the process us described by an n th order linear differential equation

Process With Two Inputs

• For a dynamic model of two inputs $f_1(t)$ and $f_2(t)$

Development of Transfer Function

 Consider a simple first-order differential equation derived for the stirred-tank heating system:

$$V\frac{dT}{dt} = F(T_i - T) + \frac{Q}{\rho C_p}$$

ocw.utm.m

- Assume volume of the tank is constant, therefore F_i = F. The value of ρ and C_p are also constant.
- At time zero the system is at its steady state; hence T(0)=0.
- Taking the Laplace transform of both sides of the equation, we have

$$VL\left(\frac{dT}{dt}\right) = L\left[F(T_i - T) + \frac{Q}{\rho C_p}\right]$$

Development of Transfer Function

$$VL\left(\frac{dT}{dt}\right) = FL(T_i) - FL(T) + \frac{1}{\rho C_p}L(Q)$$

 The constant has been factored out of the transform. Since T(t), T_i(t), and Q(t) are unspecified, their transforms can be expressed in a general manner:

$$V_s T_{(s)} = F T_{i(s)} - F T_{(s)} + \frac{1}{\rho C_p} Q_{(s)}$$

• Rearranging gives

$$(Vs + F)T_{(s)} = FT_{i(s)} + \frac{1}{\rho C_p}Q_{(s)}$$
$$T_{(s)} = \left(\frac{F}{Vs + F}\right)T_{i(s)} + \left(\frac{1}{\rho C_p}Vs + F\right)Q_{(s)}$$
$$T_{(s)} = \left(\frac{1}{V/F}s + 1\right)T_{i(s)} + \left(\frac{1}{V/F}\rho C_pVs + F\right)Q_{(s)}$$

Development of Transfer Function

$$T_{(s)} = G_{1(s)}T_{i(s)} + G_{2(s)}Q_{(s)}$$

- $G_{1(s)}$ and $G_{2(s)}$ are called *transfer functions*.
- G_{1(s)} relates the input T_{i(s)} to the output T_(s); G_{2(s)} has similar role for input Q_(s).

Step Changed Input

• At steady-state

$$T'_{(s)} = \left(\frac{1}{V_F s + 1}\right)T'_{i(s)} + \left(\frac{1}{F\rho C_p}\right)Q'_{(s)}$$

- Assume the inlet temperature is held constant $(T_i = T_i)$, then $T'_{i(s)}=0$.
- Suppose the heat input is changed by a step input at t=0 from its value of Q to a new value, Q+∆Q. Therefore, Q'=∆Q for t≥0.
- Use Table 3.1 to obtain $Q'_{(s)} = \Delta Q/s$

$$T'_{(s)} = \left(\frac{\frac{1}{F\rho C_p}}{\frac{V}{F}s+1}\right) \frac{\Delta Q}{s}$$

• Observe form Table 3.1 that T'_(s) corresponds to the time domain function

$$T'_{(t)} = K\Delta Q \left(1 - e^{-t/\tau}\right) = \frac{1}{F\rho C_p} \Delta Q \left(1 - e^{-Ft/V}\right)$$

Steady-state response

Properties of Transfer Functions

Additive Property

• A general form is

- In figure above observe that a single process output variable (X₃) may be influenced by more than one input (X₁ and X₂) acting singly or together.
- In such a case the total output change is calculated by summing the individual input contributions in the s-domain before inverting to the time domain.
- In the case, $X_{3(s)}$ is the composite output response that results from both input dynamic effects, $X_{1(s)}$ and $X_{2(s)}$.

Properties of Transfer Functions

Multiplicative Property

- Transfer function also exhibit a multiplicative property for sequential processes or process elements.
- Suppose two processes with transfer functions G₁ and G₂ are placed in series.
- The input $X_{1(s)}$ to G_1 yields an output $X_{2(s)}$, which is the input to G_2 . The output from G_2 is X_3 .
- In equation form $X_{2(s)} = G_{1(s)} X_{1(s)}$ $X_{3(s)} = G_{2(s)} X_{2(s)} = G_{2(s)} G_{1(s)} X_{1(s)}$

 In other words, the transfer function between the original input X₁ and the output X₃ can be found by multiplying G₂ by G₁.

- We must convert the rigorous nonlinear differential equations describing a chemical system into linear differential equations so that we can use the powerful linear mathematical techniques.
- What is a linear differential equation?
- Basically, it is one that contains variables only to the first power in any one term of the equation.
- If square roots, squares, exponentials, products of variables, etc. appear in the equation, it is nonlinear.
- Linear example:

$$a_1 \frac{dx}{dt} + a_0 x = f_{(t)}$$

where a_0 and a_1 are constants or functions of time only, not of dependent variables or their derivatives.

• Nonlinear examples:

$$a_{1} \frac{dx}{dt} + a_{0} x^{0.5} = f_{(t)}$$

$$a_{1} \frac{dx}{dt} + a_{0} (x)^{2} = f_{(t)}$$

$$a_{1} \frac{dx}{dt} + a_{0} e^{x} = f_{(t)}$$

$$a_{1} \frac{dx_{1}}{dt} + a_{0} x_{1(t)} x_{2(t)} = f_{(t)}$$

where x_1 and x_2 are both dependent variables.

- Mathematically, a linear differential equations is one for which the following two properties hold:
- 1. If $x_{(t)}$ is a solution, then $cx_{(t)}$ is also a solution, where c is a constant.
- 2. If x_1 is a solution and x_2 is also a solution, then x_1+x_2 is a solution.

- Linearization is quite straightforward.
- All we do is take the nonlinear functions, expand them in Taylor series around the steady-state operating level, and neglect all terms after the first partial derivatives.
- Lets assume we have a nonlinear function f of the process variables x₁ and x₂: f(x₁,x₂).
- For example, x₁ could be mole fraction or temperature or flow rate.
- We will denote the steady-state values of these variables by using an overscore:

$$\overline{x_1} \equiv$$
 steady-state value of x₁
 $\overline{x_2} \equiv$ steady-state value of x₂

• Now we expand the function $f_{(x1,x2)}$ around its steady-state value

$$f_{(x_1,x_2)} = f_{(\overline{x_1},\overline{x_2})} + \left(\frac{\partial f}{\partial x_1}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right) + \left(\frac{\partial f}{\partial x_2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_2 - \overline{x_2}\right) + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)^2 + \cdots + \left(\frac{\partial^2 f}{\partial x_1^2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right)$$

• Linearization consists of truncating the series after the first partial derivatives.

$$f_{(x_1,x_2)} = f_{(\overline{x_1},\overline{x_2})} + \left(\frac{\partial f}{\partial x_1}\right)_{(\overline{x_1},\overline{x_2})} \left(x_1 - \overline{x_1}\right) + \left(\frac{\partial f}{\partial x_2}\right)_{(\overline{x_1},\overline{x_2})} \left(x_2 - \overline{x_2}\right)$$

• We are approximating the real function by a linear function.

References:

- Seborg, D. E., Edgar, T. F., Mellinchamp, D. A. (2003). *Process Dynamics and Control*, 2nd. Edition. John Wiley, ISBN: 978-04-71000-77-8.
- Marlin, T. E. (2000). Process Control: Designing Processes and Control System for Dynamic Performance, 2nd. Edition. McGraw Hill, ISBN: 978-00-70393-62-2.
- Stephanopoulos, G. (1984). *Chemical Process Control. An Introduction to Theory and Practice*. Prentice Hall, ISBN: 978-01-31286-29-0