

# Animal Tissue Culture SQG 3242 assification of animal cells

# Classification of animal cells and tissues

### Dr. Siti Pauliena Mohd Bohari



Inspiring Creative and Innovative Minds





# Classification of cell-types and tissue

- Epithelial tissue
- Muscle tissue
- Blood and lymph
- Connective tissue
- Nervous tissue





# Epithelial tissue

- Form sheets that covering organ and lining activities
  - Skin
  - Linings of alimentary tract and lungs
- Classified according to their morphology







### Connective tissue

- For the physical structure
  - Bone
  - Fibrous tissue
  - Cartilage
  - Tendon
- Having a specific ECM

#### CONNECTIVE TISSUE

The spaces between organs and tissues in the body are filled with connective tissue made principally of a network of tough protein fibers embedded in a polysaccharide gel. This extracellular matrix is secreted mainly by fibroblasts.



fibroblasts in loose connective tissue Two main types of extracellular protein fiber are collagen and elastin.





Inspiring Creative and Innovative Minds





### Muscle Tissue

- Consists of ordinary skeletal muscle, smooth muscle
- Occurs in
  - Intestine
  - Heart muscle







### Nervous tissue

- Includes
  - Brain
  - Spinal cord
  - Peripheral nerves
  - Ganglia
- Highly complex





### Structure of supporting cells in nervous system



•Oligofendrocyte- produce myelin to insulate the neuron and increase the action potentials

•Astrocytes- supporting cell - involved in metabolic exchange between neurons and blood

•Microglia-role in immune defence and can become a phagocytes -response to infections







# Blood and lymph

- Include all the cells in the peripheral blood and their precursors in the bone marrow and lymph glands
- Structure:



#### **Animal Cell and Tissue Culture**

- Animal cell cultures are used as model systems for biochemical, physiological and pharmacological studies
- the production of growth factors, blood factors, monoclonal antibodies, interferons, enzymes, vaccines, and. hormones.

| Cell type                                                                                | Process investigated                                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Monocytes and macrophages                                                                | Pinocytosis and phagocytosis                                                                                             |  |  |  |
| Blood lymphocytes                                                                        | Karyotype analysis for detection of genetic defects in humans                                                            |  |  |  |
| Normal and transformed fibroblasts                                                       | Surface adherence properties of normal and malignant cell membranes                                                      |  |  |  |
| Kidney tubule epithelial cells                                                           | Differentiation of monolayers; electrical and vectorial transport<br>of solutes; monoclonal antibody production          |  |  |  |
| Myeloma cells and B-lympohcytes                                                          | Purification and characterization of specific membrane<br>proteins e.g. α-and β-adrenergic receptors, dopamine receptors |  |  |  |
| Kidney epithelial cells                                                                  | To investigate relationship between membrane polarity and budding properties of envelope RNA viruses                     |  |  |  |
| Transformed leucocytes, fibroblasts and<br>either lymphocytes or lymphoblastoid<br>cells | Cells are infected with Sendai virus to produce Â, ß, and interferon respectively                                        |  |  |  |
| Transformed Hela cells, mammalian cells                                                  | Radiation therapy and the design of radiosensitisers and radioprotectors                                                 |  |  |  |
| Mouse fibroblasts                                                                        | Acute and chronic toxicity testing and metabolism of<br>xenobiotics; vaccine production                                  |  |  |  |
| Primary monkey kidney cells                                                              | Production of poliovaccines; hormone secretion                                                                           |  |  |  |
| Fibroblasts, mammalian brain cells                                                       | To identify chemicals capable of including chromosome aneuploidy                                                         |  |  |  |





# Growing cells in culture

- The maintenance of cells outside of the living animal (in vitro) for easier experimental manipulation and regulation of controls.
- Pros
- Use of animals reduced
- Cells from one cell line are homogenous and have same growth requirements, optimizing growing patterns.
- In vitro models allow for control of the extracellular environment
- Able to monitor various elements and secretions without interference from other biological molecules that occurs *in vivo*

- Cons
- Removal of cells from their *in vivo* environment means removing the cells, hormones, support structures and various other chemicals that the cells interact with *in vivo*.
- It is nearly impossible to **recreate the** *in vivo* environment. The artificial conditions could cause cells to de-differentiate which will cause them to behave differently and produce proteins other than it would *in vivo*.
  - Genotype: the genetic make-up of the cell
  - *Phenotype*: the appearance and behavior of a cell as a result of their genotype. Most often, scientists are looking at phenotypic changes in their analysis of cells in culture





# Primary culture

- Cells that are cultured directly from the subject
- With the exception of some derived from tumours, most primary cell cultures have limited lifespan.
- After a certain number of population doublings cells undergo the process of senescence and stop dividing, while generally retaining viability.
- An established or immortalised cell line has acquired the ability to proliferate indefinitely either through random mutation or deliberate modification, such as artificial expression of the telomerase gene.



### Making a Primary Culture





Inspiring Creative and Innovative Minds



### Isolation of free cells

- The major problem associated with the isolation of free cells and cell aggregates from organs is that of releasing the cells from their supporting matrix without affecting the integrity of the cell membrane.
- Various methods are employed to achieve this goal.

**OPENCOURSEWARE** 







Isolation of free cells



Inspiring Creative and Innovative Minds





# **Cell Lines**

**OPENCOURSEWARE** 

- Cell Line
  - Cells that have undergone a mutation and won't undergo apoptosis after a limited number of passages. They will grow indefinitely.

#### Transformed cell line

 A cell line that has been transformed by a tumor inducing virus or chemical. Can cause tumors if injected into animal.

#### • Hybrid cell line (hybridoma)

Two cell types fused together with characteristics of each





A. Anchorage dependent cells

OPENCOURSEWARE

- 1. Those which remain viable only when attached to a solid substrate (e.g., primary cultures, normal diploid fibroblast cell strains, some established cell lines)
- B. Anchorage independent cells
- 2. Those that will proliferate in fine suspension (e.g., murine leukemia cell line P388, Chinese hamster ovary -CHO cell lines).





#### Anchorage-Chondrocytes



OPENCOURSEWARE



# Suspension-Red blood cells



Inspiring Creative and Innovative Minds

# Few popular cell lines

| 293           | Epithelia                    | Kidney                          | Human             | Embryonic | Aneuploid | Readily transfected.                                | Graham et al., 1977                           |
|---------------|------------------------------|---------------------------------|-------------------|-----------|-----------|-----------------------------------------------------|-----------------------------------------------|
| 3T3-A31       | Fibroblast                   |                                 | Mouse<br>BALB/c   | Embryonic | Aneuploid | Contact inhibited;<br>readily transformed           | Aaronson & Todaro<br>1968                     |
| 3T3-L1        | Fibroblast                   |                                 | Mouse Swiss       | Embryonic | Aneuploid | Adipose<br>differentiation                          | Green & Kehinde,<br>1974                      |
| BEAS-2B       | Epithelial                   | Lung                            | Human             | Adult     |           |                                                     | Reddel et al., 1988                           |
| BHK21-C13     | Fibroblast                   | Kidney                          | Syrian<br>hamster | Newborn   | Aneuploid | Transformable by<br>polyoma                         | Macpherson &<br>Stoker, 1962                  |
| BRL 3A        | Epithelial                   | Liver                           | Rat               | Newborn   |           | Produce IGF-2                                       | Coon, 1968                                    |
| C2<br>C7      | Fibroblastoid<br>Epithelioid | Skeletal muscle<br>Hypothalamus | Mouse<br>Mouse    | Embryonic |           | Myotubes<br>Neurophysin;                            | Morgan et al., 1992<br>De Vitry et al., 197   |
| MDCK          | Epithelial                   | Kidney                          | Dog               | Adult     | Diploid   | Domes, transport                                    | Gaush et al., 1966<br>Rindler et al.,<br>1979 |
| NRK49F        | Eibroblast                   | Kidney                          | Rat               | Adult     | Aneuploid | Induction of<br>suspension growth<br>by TGF-α,β     | De Larco & Todar<br>1978                      |
| STO           | Fibroblast                   |                                 | Mouse             | Embryonic | Aneuploid | Used as feeder layer<br>for embryonal stem<br>cells | Bernstein, 1975                               |
| Vero          | Fibroblast                   | Kidney                          | Monkey            | Adult     | Aneuploid | Viral substrate and                                 | Hopps et al., 196                             |
| Continuous, f | rom Neoplastic T             | issue                           |                   |           |           | 36630                                               |                                               |
| A2780         | Epithelial                   | Ovary                           | Human             | Adult     | Aneuploid | Chemosensitive with<br>resistant variants           | Tsuruo et al., 198                            |
| A549          | Epithelial                   | Lung                            | Human             | Adult     | Aneuploid | Synthesizes surfactant                              | Giard et al., 1972                            |
| A9            | Fibroblast                   | Subcutaneous                    | Mouse             | Adult     | Aneuploid | Derived from L929;<br>Lacks HGPRT.                  | Littlefield, 1964b                            |
| B16           | Fibroblastoid                | Melanoma                        | Mouse             | Adult     | Aneuploid | Melanin                                             | Nilos & Makarski<br>1978                      |
| C1300         | Neuronal                     | Neuroblastoma                   | Rat               | Adult     | Aneuploid | Neurites                                            | Liebermann &<br>Sachs, 1978                   |
| C6            | Fibroblastoid                | Glioma                          | Rat               | Newborn   | Aneuploid | Glial fibrillary acidic<br>protein, GPDH            | Benda et al., 196                             |

Inspiring Creative and Innovative Minds

ocw.utm.my

BY





### Maintaining cells in culture

- Cells are grown and maintained at an appropriate temperature and gas mixture (typically, 37°C, 5% CO<sub>2</sub>) in a cell incubator.
- Culture conditions vary widely for each cell type, and variation of conditions for a particular cell type can result in different phenotypes being expressed
- Aside from temperature and gas mixture, the most commonly varied factor in culture systems is the growth medium. Recipes for growth media can vary in pH, glucose concentration, growth factors, and the presence of other nutrient components.
- The growth factors used to supplement media are often derived from animal blood, such as calf serum. These blood-derived ingredients pose the potential for contamination of derived pharmaceutical products with viruses or prions.





- Some cells naturally live without attaching to a surface, such as cells that exist in the bloodstream.
- Others require a surface, such as most cells derived from solid tissues.
- Cells grown unattached to a surface are referred to as suspension cultures.
- Other adherent cultures cells can be grown on tissue culture plastic, which may be coated with extracellular matrix components to increase its adhesion properties and provide other signals needed for growth



### Animal Tissue Culture Media

#### **Culture Media Containing Naturally occurring Ingredients**

- The various kinds of such media used are:
- (i) Blood plasma, (ii) blood serum, (iii) tissue extract and (iv) complex natural media.

(i) Blood plasma is used to provide:

- 1. Nutritive substrate and a supporting structure for many types of cultures, just as it also provides a matrix for new cells during the repair of injury in the body.
- 2. Conditioning the surface of glass for better attachment of cells.
- 3. Protecting cells and tissues from traumatic damage during subculture.
- 4. Protection from sudden changes in the environment at times of fluid change.
- 5. localized pockets of conditioned medium around cells.





# Natural Media...

#### **Blood Serum**

- Blood serum (*plasma minus fibrinogen*) with or without other nutritive substances may be used either as the entire culture medium or as the fluid phase of a medium
- The importance of the low molecular weight growth factors provided by serum was understood later and even in a chemically defined simple medium like eagle's and dulbecco needs 10 to 20 % of serum supplement

#### Tissue Extracts

 Carrel (1912) discovered that embryo tissue extract had remarkable powers of promoting cell growth and multiplication in cultures of connective tissue cells from chick embryo heart.

#### **Complex Natural Media**

- Supplemented Hanks-Simms medium
- Supplemented bovine amniotic fluid medium

**OPENCOURSEWARE** 

- Serum-supplemented yeast extract medium
- Serum-supplemented lactalbumin hydrolysate and yeast extract medium





### Chemically defined media

- Earlier, the nutritive media for the cultivation of animal cells *in vitro* consisted of blood plasma, blood serum, tissue extracts, etc.
- The complexity and variability of these naturally occurring materials made it difficult to use
- attempts to devise chemically defined media were made by workers and many media were put to use
- Presently the constituents of cell culture media are all well defined and complex containing inorganic salts, amino acids, vitamins, glutamine, glucose and protein supplements and most cell cultures require a gas phase as well  $O_2$  and  $CO_2$ .
- Many media are made up of acid solutions and may incorporate a buffer.
- Each medium has a recommended bicarbonate concentration and CO<sub>2</sub> tension to achieve correct pH and osmolarity



ocw.utm.mv



### References

- Freshney, R.I. (2000) Culture of Animal Cells: A manual of Basic Technique. 5fifth edition. New Jersey: John-Wiley & Sons, Inc.
- Freshney RI. Culture of Animal Cells: A Manual of Basic Technique. New York: Wiley-Liss, 2005.
- Bernhard, O., & Bhatia, N. (2004) Tissue Engineering.
  Pearson Prentice Hall Bioengineering



ocw.utm m