

SAMSUDIN AHMAD

Faculty of Geoinformation and Real Estate
Universiti Teknologi Malaysia
@Mail: samsudin@utm.my
innovative • entrepreneurial • global

Topic 6 Allocating Resources to the Project

Introduction

- Projects Compete With One Another for Resources
- resources that are not consumed
- resources that are consumed
- Goal of Resource Allocation is to Optimize Use of Limited Supply
- Requires making trade-offs
- time constrained
- resource constrained

EXPEDITING A PROJECT

The Critical Path Method (CPM)

- Normal Duration Estimates
- Normal Costs
- Crash Duration Estimates
- Crash Costs
- Crash Cost Per Day

Normal Duration - Crash Duration
Crash Cost - Normal Cost

Gantt Chart Crash Problem -- 21-Day Project

AON Network for Sample Crash Problem -- 21-Day Project

innovative • entrepreneurial • global

Gantt Chart for 20-Day Solution to Crash Problem

Gantt Chart for 19-Day Solution to Crash Problem

Gantt Chart for 18-Day Solution to Crash Problem

Gantt Chart for 16-Day Solution to Crash Problem

Project Cost Versus Project Duration for Sample Crash Problem

innovative • entrepreneurial • global

Probabilistic Activity Durations

Three time estimates made for both normal resource loading and crash resource loading

Variance of normal activity may be different than variance of crash time

Using Excel's Solver to Crash a Project

- Target Cell
- minimize crashing costs
- By Changing Cells
- amount to crash activities
- time events occur
- Constraints
- amount each activity can be crashed
- precedence relationships
- complete project by specified time
- nonnegativity

AOA Network of Sample "Crash" Problem

innovative • entrepreneurial • global

Cost/Duration Graph for Sample Crashing Project

Fast-Tracking a Project

Used Primarily in Construction Industry

Building phase started before design and planning phases completed

Particularly appropriate when large proportion of work is routine

RESOURCE LOADING

Resource Loading

- Amount of specific resources that are scheduled for use on specific activities or projects at specific times.
- Usually a list or table.

Action Plan and Gantt Chart for Production of a Videotape

The Charismatic VP

- Subordinates have hard time saying no to well liked boss.
- Leads to overcommitted subordinates.
- Problem further compounded because more experienced workers tend to be most over worked.
- One solution is to set specific limits on amount of overscheduling permitted.

RESOURCE LEVELING

OPENCOURSEWARE

Gantt Chart for Videotape Project, Adjusted for Client Availability

Adjusted for resource availability

Resource Overallocation Report for Scriptwriter Showing all Activities

Project start date: $03 / 01$ Resource Overallocated Project finish date: $05 / 17$																
WBS	Task Name	Duration	Sch. Start	Sch. Finish	March					April				May		
					28	06	13	20	27	03	10	17	24	01	08	15
2	Scripwriting	14 days	03/01	03/15												
3.2	Propose shoots	6.5 days	03/01	03/07												
5	Revise script	6.63 days	03/31	04/07												
Prior to resource leveling		Preleveled task $\boxed{ }$ Preleveled milestone Preleveled split $-\boxed{-----}$ Milestone \diamond Task \boxed{y} Delay Split $-\boxed{----}$ Slack Progress Summary														

Graphic Resource Overallocation Report for Scriptwriter

Resource Overallocated: Scriptwriter												
2	March				April		10	17	24	May		
	28	06	13	20	27	03				01	08	
								-		-		
1.8												
1.6										-		
1.4												
1.2												
0.8												
0.6										--		
0.4										-		
0.2												
Peak units:	2	2	1		1	1						
	Scrip	er	Overallocated \square Allocated \square									
Project: Pr	ducing a	deotap										

Resource Leveled Report for Scriptwriter Showing all Activities

Graphic Resource Leveled Report for Scriptwriter

Daily Resource Loading Chart for Videotape Project, Scriptwriter Leveled

Final Videotape Project Gantt Chart Schedule, With Two Scriptwriters and Producer Leveled

Resource Loading/Leveling and Uncertainty

- 28,282 Hours Needed
- Group Capacity
-21 (people) $\times 40$ (hrs/wk) $\times 34 \mathrm{wk}=28,560$ labor hrs
- Correction for Holidays
-21×3 (days) $\times 8$ (hours) $=504$ labor hrs
- Vacations
-11×2 (weeks) $\times 40=880$ labor hrs

Resource Loading/Leveling and Uncertainty continued

- Hours Available
$-28,560-504-880=27,176$
- about 1100 less than needed
$-28,282 / 27176=1.04$
- What about
- Workers getting sick?
- Task not ready when worker is ready?
- Change orders?

Thirty-Four-Week Resource Loading Chart for a Software Engineering Group

ALLOCATING SCARCE RESOURCES TO PROJECTS

Use of Software

- Begin with Pert/CPM Schedule
- Activities examined period by period and resource by resource
- In cases where demand for resource exceeds supply, tasks considered one by one and resources assigned to these tasks based on priority rules

Some Comments about Constrained Resources

- Scarcity of resources rarely applies to resources in general
- "Walts"

Some Priority Rules

- As soon as possible
- As late as possible
- Shortest task duration first
- Minimum slack first
- Most critical followers
- Most successor
- Most resources first

Choosing a Priority Rule

- Schedule Slippage
- amount project or set of projects delayed
- Resource Utilization
- extent that resources are over or underworked
- In-Process Inventory
- amount of unfinished work in the system

ALLOCATING SCARCE RESOURCES TO SEVERAL PROJECTS

Pseudo activities

- Used to link several project together
- Have duration but do not require any resources
- This approach allows a set of projects to be dealt with as though it were a single project
- use of MSP's resource loading and leveling charts and tables

Multiple Projects Connected with Pseudo activities Shown on a Time Line

Resource Allocation and the Project Life Cycle

Project or task life cycles

Introduction

- Similar issues that trouble people about working on projects regardless of type of project
- unrealistic due dates
- too many changes
- resources and data not available
- unrealistic budget
- These issues/problems related to need to make trade-offs
- To what extent are these problems caused by human decisions and practices?

Three Project Scenarios

(Scenario 1)

(Scenario 3)
innovative • entrepreneurial • global

Project Completion Time Statistics Based on Simulating Three Projects 200 Times

	Scenario 1	Scenario 2	Scenario 3
Average	50.4	51.9	53.4
Std Dev	7.1	6.3	5.3
Max	69.4	72.7	69.3
Min	30.1	36.1	39.3
Median	50.0	51.8	53.1

Observations

Average Completion Times

Implications of Assuming Known Activity Times
Shape of the Distribution
Worker Time Estimates
Impact of Inflated Time Estimates
Student Syndrome

Multitasking

Two Small Projects

Project A

Project B
\square You \square Other resources

Alternative Gantt Charts for Projects A and B

Common Chain of Events

- Underestimate time needed to complete project
- assumption of known activity times and independent paths
- Project team members inflate time estimates
- Work fills available time
- student syndrome
- early completions not reported

Common Chain of Events continued

- Safety time misused
- Misused safety time results in missed deadlines
- Hidden safety time complicates task of prioritizing project activities
- Lack of clear priorities results in poor multitasking

Common Chain of Events concluded

- Poor multitasking increases task durations
- Uneven demand on resources also results due to poor multitasking
- More projects undertaken to ensure all resources fully utilized
- More projects further increases poor multitasking

Reversing the Cycle

- Reduce number of projects assigned to each individual
- Schedule start of new projects based on availability of bottleneck resources
- Reduce amount of safety time added to individual tasks and then add some fraction back as project buffer
- activity durations set so that there is a high probability the task will not be finished on time

The Critical Chain

- Longest chain of consecutively dependent events
- considers both precedence relationships and resource dependencies
- Project Buffer
- Feeding Buffer

Sample Network Diagram

Project and Feeder Buffers

Reference

- Meredith, R. J. \& Mantel, J. S. (1995). Project Management - A Managerial Approach. John Wiley \& Sons, 5th Edition.

