

SKF4153- PLANT DESIGN

DISTILLATION SEQUENCE

Prof. Dr. Zainuddin Abdul Manan Ir. Sharifah Rafidah Wan Alwi Dr. Haslenda Hashim Mrs. Zarina Muiz

Inspiring Creative and Innovative Minds

ocw.utm.my

Separation Systems

Reference: J.M. Douglas, Conceptual Design of Chemical Processes, McGraw Hill, 1998.

SEPARATION FACTOR

- The <u>separation factor</u>, SF, defines the degree of separation achievable between two key components of the feed.
- SF is arranged (for calculation) to give value >1.0; possible separation. The larger the SF, the easier is to separate the mixtures.
- ✤ SF is generally limited by thermodynamic equilibrium.

$$SF = \frac{y_{1}/x_{1}}{y_{2}/x_{2}} = \frac{K_{1}}{K_{2}} = \alpha_{1,2} \left(= \frac{P_{1}^{s}}{P_{2}^{s}} \text{ for ideal VLE} \right)$$

 $\alpha_{1,2}$ = Relative Volatility P_1^s = vapor pressure of species 1

Example

A liquid mixture containing 50 mole % propane (C3-), 50 mole % propene (C3=) is fed at a rate of 1000 mol/h to a distillation unit. Estimate the operating pressure for a column separating C3- from C3=, assuming cooling water at 30°C is available for use.

What would be the top temperature of the column?

	Compound		1 atm	2 atm	5 atm	10 atm	20 atm	40 atm
	methane	CH ₄	- 162	- 152	- 138	- 125	- 108	- 86
	ethane	$C_2 H_6$	- 89	- 74	- 53	- 32	- 6	+ 24
	ethene	C_2H_4	- 104	- 91	-71	- 53	- 29	- 1.5
	propane	C ₃ H ₈	- 42	- 26	+ 1	+ 27	+ 57	+ 95
	propene	$C_{3}H_{6}$	- 48	- 31	- 5	+ 20	+ 49	+ 85
	butane	C4 H 10	- 0.5	+ 19	+ 50	+ 80	+ 116	+ 160
	butene	$C_4 H_8$	- 6.7	+ 6	+ 30	+ 67	+ 102	+ 142
	pentane	C ₅ H ₁₂	+ 36	+ 58	+ 92	+ 125	+ 164	+ 185

Column Temperature

ocw.utm.my

	T bp (K)	Тс (К)	Α	В	С
n-butane	272.6	425	15.68	2154.9	-32.42
Benzene	353	562	15.9	2788.51	-52.34
Toulene	384	593	16.014	3096.52	-53.67

InP*=A - B/(T+C)

(*mmHg*, *K*); 1 bar=750 *mmHg*

		Scenario 1		Scenario 2	
(kmol/h)	FEED	D1	B1	D2	B2
n-butane	20	20		20	
Benzene	30		30	30	
Toulene	50		50		50

- Explain bubble point and dew point?
- What are the bubble point and dew point of pure water?
- Calculate column pressure and T bub at the column bottoms for each scenario.
- Why cooling water can be used to condense n-butane (Boiling point=272.6K)?
- Calculate T dew for each scenario.
- Calculate relative volatility of the adjacent components if the feed entering at 310K.

Choose the right column pressure!!

Consider the separation of a mixture of 50 mol/hr of $C_3H_8(1)$ and 50 mol/hr $C_3H_6(2)$ at a pressure of 1.1 bar and a bubble point feed temperature of 230 K. Under these conditions, $P_2^0=930.5$ mm Hg and $P_1^0=724.1$ mm Hg and $\underline{\alpha_{1/2}}=1.285$. Setting the recoveries of the two components at 0.99 (lk,2) and 0.01 (hk,1), we find out that at total reflux, the minimum number of trays N_m (by Fenske Eqn) is

$$N_m = \ln \left[\frac{0.99}{0.01} \cdot \frac{0.99}{0.01} \right] / \ln \alpha_{lk} / h_k = 36.65$$

Now if the pressure is increased tenfold to P=10.94 bar, we have a bubble point feed temperature of 300 K and P⁰₂=8975.6 mm Hg, and P⁰₁=7458.5 mm and $\alpha_{\underline{1/2}}$ =1.203. As a result, for the same recoveries, the separation becomes more difficult and the minimum number of trays increases to N_m=49.72.

Sequences for Ordinary Distillation (OD)

Equation for number of different sequences of ordinary distillation (OD) columns, $N_{\rm S}$, to produce *P* products:

$$N_{S} = \frac{[2(P-1)]!}{P!(P-1)!}$$

Р	# of Separators	N _s
2	1	1
3	2	2
4	3	5
5	4	14

Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.

Rule of thumb for distillation sequence

- Remove thermally unstable, corrosive, or chemically reactive components early in the sequence.
- Remove <u>final products one-by-one as distillates</u> (the <u>direct sequence</u>).
- Separate <u>early in the sequence, those components of greatest molar</u> <u>percentage</u> in the <u>feed</u>.
- Sequence separation points in the order of <u>decreasing relative</u> <u>volatility</u> so that the <u>most difficult splits</u> are made in the absence of other components.
- Sequence separation points to <u>leave last those separations that give</u> <u>the highest purity</u> products.
- Sequence separation points that favor <u>near equimolar amounts of</u> <u>distillates and bottoms</u> in each column. The <u>reboiler duty</u> is <u>not</u> <u>excessive</u>. (especially if energy cost high)

Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.

Variation in relative volatility

and molar percentage.

- First column should separate
 C3 , the most volatile.
- Second column should be for separation of nC4 and iC5 as LK and HK respectively.
- Two most difficult splits are iC4/nC4 and iC5/nC5, so two separate columns for these separation

Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.

ocw.utm.m

Thus, favour sequence with the lowest vapour flowrate

Vapour flowrate estimation

V = D(1 + R)Define R_F = R/R_{min} $V = D(1 + R_F R_{min})$Equation 1

(Use Underwood Equation to calculate R_{min})

Underwood Equation:

$$R_{min} = \frac{1}{\alpha - 1} \left[\frac{X_{DLK}}{X_{FLK}} - \alpha \frac{X_{DHK}}{X_{FHK}} \right]^{\sim 0 - Assuming sharp separation and LK and LLK o/head}$$
$$R_{min} = \frac{1}{\alpha - 1} \left[\frac{F}{D} \right] \dots Equation 2$$

Combine Equations (1) and (2), gives

$$V = D + \frac{R_F}{\alpha - 1}F$$

The table below gives the data for a ternary separation of benzene, toluene and ethyl benzene. Using the vapour flowrate equation, determine whether direct or indirect sequence should be used.

Component	Flowrate (kmol/h)	Relative volatility	Relative volatility adjac. comp.
Benzene Toluene Ethyl Benzene	269 282 57	3.53 1.80 1.0	1.96 1.80

R_F=1.1

For the indirect sequence

$$\sum V = (269 + 282) + (269 + 282 + 57) \underbrace{1.1}_{(1.8 - 1)} + 269 + (269 + 282) \underbrace{1.1}_{(1.96 - 1)}$$

= 1387 + 900.4

ocw.utm.my

= 2287.4 kmol/h

Hence, the direct sequence should be used. NOTE: High V, High Capital and Op. Costs!!

ALSO TRY THIS ONE AT HOME

A stream is to be separated of Methane (bp –161°C), benzene (bp 80°C), toluene (bp 110°C) and orthoxylene (bp 144°C) of a composition of , respectively, 0.50, 0.10, 0.10, 0.30. What sequence of boiling-point exploitations will probably lead to the most economic separation?

```
(a) Use the heuristic approach
(b) Verify your answer in (a) using the vapour flowrate approach
Given:
Relative volatility 3.70, 2.5, 1.7 and 1.0
R_F = 1.1
```


References

- J.M. Coulson, J.F. Richardson, R.K. Sinnot, Chemical Engineering Vol. 6, Pergamon Press, 1985.
- J.M. Douglas, Conceptual Design of Chemical Processes, McGraw Hill, 1998.
- L.T. Biegler, I.E. Grossman, A.W. Westerberg, Systematic Methods of Chemical Process Design, Prentice Hall, 1997.
- Monograph, Process Design and Synthesis, Universiti Teknologi Malaysia, 2006/07
- R. Smith, Chemical Process Design, McGraw Hill, 1995.
- W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.