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Reference:J.M. Douglas, Conceptual Design of Chemical Processes, McGraw Hill, 1998.
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SEPARATION FACTOR

*¢ The separation factor, SF, defines the degree of separation
achievable between two key components of the feed.

¢ SFis arranged (for calculation) to give value >1.0; possible
separation. The larger the SF, the easier is to separate the mixtures.

s SFis generally limited by thermodynamic equilibrium.

X K, (:Pl for ideal VL%
yIx, K U P

2 2

SF =

a,, = Relative Volatility
P* = vapor pressure of species 1
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Example

®UT™

A liquid mixture containing 50 mole % propane (C3-), 50 mole % propene (C3=) is
fed at a rate of 1000 mol/h to a distillation unit. Estimate the operating pressure for
a column separating C3- from C3=, assuming cooling water at 30°C is available for

use.

What would be the top temperature of the column?

Compound latm 2Zatm Satm 10atm 20atm 40 atm
methane CH, -162 -152 -138 -125 — 108 — 86
ethane C ,H, -~ 89 — 74 - 53 —32 -6 + 24
ethene ICEI-I4 - 104 -91 - 71 - 53 - 29 - 1.5
propane C 3 Hs — 42 - 26 + 1 + 27 + 57 + 95
propene C,H, —48 -3l -5 + 20 + 49 + 85
butane C,H, -05 +19 + 50 + 80 + 116 + 160
butene C,H, -6.7 +6 + 30 + 67 + 102 + 142
pentane C.H, +36  +58 + 62 + 125 +164  + 185
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T bp (K) Te (K) A B C
n-butane 272.6 425 15.68 2154.9 -32.42
Benzene 353 562 15.9 2788.51 -52.34
Toulene 384 593 16.014 3096.52 -53.67

InP*=A - B/(T+C)
(mmHg, K); 1 bar=750 mmHg

Scenario 1 Scenario 2
(kmol/h) FEED D1 Bl D2 B2
n-butane 20 20 20
Benzene 30 30 30
Toulene 50 50 50

* Explain bubble point and dew point?

* What are the bubble point and dew point of pure water?

* Calculate column pressure and T bub at the column bottoms for each scenario.
* Why cooling water can be used to condense n-butane (Boiling point=272.6K)?

e Calculate T dew for each scenario.
* Calculate relative volatility of the adjacent components if the feed entering at 310K.



Choose the right column pressure!!

Consider the separation of a mixture of 50 mol/hr of C;Hg (1) and 50 mol/hr
C;H, (2) at a pressure of 1.1 bar and a bubble point feed temperature of
230 K. Under these conditions, P%,=930.5 mm Hg and P°,=724.1 mm Hg
and a,,=1.285. Setting the recoveries of the two components at 0.99
(Ik,2) and 0.01 (hk,1), we find out that at total reflux, the minimum
number of trays N, (by Fenske Eqn) is

N — In{0.99 0.99

. /In cok 1k = 36.65
0.01 0.01

Now if the pressure is increased tenfold to P=10.94 bar, we have a
bubble point feed temperature of 300 K and P°%,=8975.6 mm Hg, and
P0,=7458.5 mm and a,,,,=1.203. As a result, for the same recoveries,
the separation becomes more difficult and the minimum number of
trays increases to N _,=49.72.



Sequences for Ordinary Distillation (OD)

Equation for number of different sequences of ordinary
distillation (OD) columns, Ng, to produce P products:

®UT™

R GG
PI(P-1)
P # of Separators N,
2 1 1
3 2 2
4 3 5
5 4 14




(Direct sequence) ? D c
(a)
Sequences for 4- k
component _;2_ E Z
separation ,, D
(b)
’ D . v b lu ) ]

{Indirect sequence)
{c)
Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis
and Evaluation, John Wiley and Sons, Inc., 2010.
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Rule of thumb for distillation sequence

©® Remove thermally unstable, corrosive, or chemically reactive
components early in the sequence.

® Remove final products one-by-one as distillates (the direct
seguence).

© Separate early in the sequence, those components of greatest molar
percentage in the feed.

® Sequence separation points in the order of decreasing relative
volatility so that the most difficult splits are made in the absence of
other components.

© Sequence separation points to leave last those separations that give
the highest purity products.

@ Sequence separation points that favor near equimolar amounts of
distillates and bottoms in each column. The reboiler duty is not
excessive. (especially if energy cost high)

Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis
and Evaluation, John Wiley and Sons, Inc., 2010.



Component Pair

Arrange in the

order of Cs/iCy
increasing 1C4/nCy
boiling point nCy/iCs
iCs/ﬂCs

Question:

Use heuristics to determine the

Approximate o at 1

®UT™

atm

3.6
1.5
2.8
1.35

Propane, 98% recovery

best sequence of OD columns.

Feed, 37.8°C, 1.72 MPa

Separation
2 process

Species Kgmoles/hr

Propane (C3) 454

Isobutane, 98% recovery

n-Butane, 98% recovery

Isopentane, 98% recovery

Isobutane (iCy) 136.1
n-Butane (nCy) 226.8

n-Pentane, 98% recovery

—>

Isopentane (iCs) 181.4
n-Pentane (nCs) 3175
907.2
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\/

*%* Variation in relative volatility
and molar percentage.

\/

** First column should separate
C3, the most volatile.

\/

** Second column should be for
separation of nC4 and iC5 as LK
and HK respectively.

\/

** Two most difficult splits are
iC4/nC4 and iC5/nC5, so two
separate columns for these
separation

iCy

nC4
iC 5
nC5

[ic,
o

iCs
nCs

®UT™

—> G

iCy

nC4

Ly 1y
—> (s

iCs
nCs

) HC5

Reference: W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis

and Evaluation, John Wiley and Sons, Inc., 2010.
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Vapour Flowrate Approach

Qc!menser Operating I
Cost
DI Capi
column pltal
Cost

a1

Thus, favour sequence with the lowest vapour flowrate

Vapour flowrate estimation
V=D(1+R)
Define Re= R/R

min

V =D(1+R-R

min) ...... Equation 1




(Use Underwood Equation to calculate R

min)

Underwood Equation:
~ 0 - Assuming sharp

1 X X separation and LK
Roin = =7 | v - A% and LLK o/head
a-1 | x
FLK FHK

...... Equation 2

Combine Equations (1) and (2), gives



The table below gives the data for a ternary separation of
benzene, toluene and ethyl benzene. Using the vapour
flowrate equation, determine whether direct or indirect
sequence should be used.

Component Flowrate Relative Relative
(kmol/h) volatility volatility
adjac. comp.
Benzene 269 3.53 1.96
Toluene 282 1.80 1.80
Ethyl Benzene 57 1.0

R.=1.1



Solution:
269
.0
269
282 = —' (2)82
57 L )
0
N—— O

S7

For the direct sequence

TV =269+ (269+282+57) 1.1 +282+(282+57) 1.1
(1.96 -1) (1.8 -1)

= 965.7 + 748.1

= 1713.8 kmol/h Second column
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For the indirect sequence

TV =(269 +282) + (269 + 282 + 57) 1.1 + 269+ (269 +282) 1.1
(1.8 -1) (1.96 -1)

= 1387 + 900.4
= 2287.4 kmol/h
269
— 0
0
269 R L
282 . 0
57 — 282
- 0 0
0
57

Hence, the direct sequence
should be used. NOTE: High V, High Capital and Op. Costs!!
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ALSO TRY THIS ONE AT HOME

A stream Is to be separated of Methane (bp —161°C), benzene
(bp 80°C), toluene (bp 110°C) and orthoxylene (bp 144°C) of a
composition of , respectively, 0.50, 0.10, 0.10, 0.30. What
sequence of boiling-point exploitations will probably lead to the
most economic separation?

(a) Use the heuristic approach
(b) Verify your answer in (a) using the vapour flowrate approach

Given:
Relative volatility 3.70, 2.5, 1.7 and 1.0
Re=1.1
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