SKF4153- PLANT DESIGN

RULE OF THUMB

Prof. Dr. Zainuddin Abdul Manan

Ir. Dr. Sharifah Rafidah Wan Alwi

Raw Materials and Chemical Reactions

Select raw materials and chemical reactions to <u>avoid</u>, <u>or reduce</u>, the handling and storage of <u>hazardous and toxic chemicals</u>.

- A <u>water spill</u> into an <u>ethylene-oxide</u> storage tank could lead to an accident similar to the <u>Bhopal</u> incident.
- So the main issue here is the <u>risk associated</u> with the storage of <u>hazardous intermediate</u> (ethylene-oxide).

Distribution of Chemicals

Use an excess of one chemical reactant in a reaction operation to <u>completely consume</u> a second <u>valuable</u>, <u>toxic</u>, <u>or hazardous</u> chemical reactant.

- To completely <u>consume</u> the <u>hazardous</u> and toxic reactant (<u>chlorine</u>)
- To <u>absorb excess heat of reaction</u> hence maintaining moderate temperature

Distribution of Chemicals

Eliminate inert species before the reaction

- When the separations are easily accomplished
- When the catalyst is adversely affected by the inert
- Exothermic heat of reaction is small

Do not purge valuable species or species that are toxic and hazardous, even in small concentrations

- ❖ Add separators to recover valuable species
- Add reactors to eliminate toxic and hazardous species
- By-products of reversible reactions, even in small quantities, are usually recycled to extinction

Reference: J.M. Douglas, Conceptual Design of Chemical Processes, McGraw Hill, 1998.

Pumping and Compression

To increase the pressure of a stream, <u>pump a liquid</u> rather than compress a gas; through <u>condense a vapor</u>, as long as refrigeration (and compression) is not needed, before pumping.

- More <u>efficient (cheaper)</u> to pump a liquid than to compress a gas.
- **Exception:** if condensation requires refrigeration.

$$\dot{W} = \int_{P_1}^{P_2} \dot{V} dP$$

SUMMARY

- Select reaction paths that do not involve <u>toxic or hazardous</u> <u>chemicals</u>, and avoiding their storage in large quantities.
- Purge species that would otherwise build up to unacceptable concentrations, to achieve a high selectivity to the desired products.
- Apply <u>rule of thumb</u> in selecting separation processes to separate liquids, vapors, and vapor-liquid mixtures.
- ➤ Distribute the chemicals, by using excess reactants, inert diluents, and cold shots, to <u>remove the exothermic heats</u> of reaction.
- Advantages of <u>pumping a liquid</u> rather than compressing a vapor.

References

- J.M. Douglas, Conceptual Design of Chemical Processes, McGraw Hill, 1998.
- L.T. Biegler, I.E. Grossman, A.W. Westerberg, Systematic Methods of Chemical Process Design, Prentice Hall, 1997.
- Monograph, Process Design and Synthesis, Universiti Teknologi Malaysia, 2006/07
- R. Smith, Chemical Process Design, McGraw Hill, 1995.
- W.D. Seider, J.D. Seider, D.R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc., 2010.