

SET 4573: Data Communication and Switching System

Chapter 4: Data Link Layer Protocol

Lecturer:

Alias Mohd

Telecommunications Department

Faculty of Electrical Engineering

UTM

High Level Data Link Control (HDLC)

- one of the most commonly-used protocols in layer 2 in OSI Model
- Manage the flow of packets at data link layer (layer 2)
- Variation of HDLC is also used in X.25, Frame Relay

HDLC Station Types

- Primary station
 - controls operation of network link
 - issue command to control other stations (secondary stations)
 - maintains logical link to each secondary stations
- Secondary station
 - under the control of primary station
 - will response to commands by primary station
- Combined station
 - Can both issue commands and responses

HDLC Transfer Modes (1)

- Normal Response Mode (NRM)
 - unbalanced configuration (primary & secondary stations)
 - primary initiates transfer to secondary and secondary will response to the command from primary
 - host computer as primary & terminal as secondary station
 - e.g mainframe computer environment

HDLC Transfer Modes (2)

- Asynchronous Balanced Mode (ABM)
 - balanced configuration with both primary and secondary can initiate transmission
 - widely used
 - e.g X.25

HDLC Transfer Modes (3)

- Asynchronous Response Mode (ARM)
 - unbalanced configuration where secondary station may initiate transmission without permission from primary station
 - rarely used

HDLC Frame Structure

- uses synchronous transmission
- single frame format for all data and control information transmission

Flag	Address	Control	Information	FCS	Flag
(8-bit)	(8 and	(8 or 16 bits)	(variable)	(16 or	(8-bit)
	extendable)			32	
				bits)	

Flag Fields

- Preamble and postamble field at both ends of the frame with 01111110 pattern
 - used to synchronization process to determine the beginning and end of frame
- Bit stuffing used to avoid confusion with data containing 01111110
 - bit '0' inserted after every sequence of five consecutive bit '1's
 - receiver will delete bit '0' after detecting five '1's in the frame
 - otherwise it will accept as the normal bit/data

Address Field

- Identifies secondary station that sent or will receive frame with 8-bit long (an octet) or multiples of 7-bit
 - Least Significance Bit (LSB) of each octet indicates that it is the last octet (bit 1) or not (bit 0)
- Broadcast address is set to 11111111

Control Field

- to identify for different type of frames
 - Information frame (I-frame) contains data to be transmitted to user (next layer up)
 - also contains frame sequence number for flow and error control or ACK
 - Supervisory frame (S-frame)- used as the ACK frame
 - Unnumbered frame (U-frame) management data for link control
- The first or two bits of control field identify the frame type

Control Field Diagram

Poll/Final Bit

- Used by command frame
 - P bit
 - 1 to poll response from peer
- Used by response frame
 - F bit
 - 1 to indicate response to command

Information Field

- Filled with user information in I-frame and link management information for U-frame
- Contain integral number of octets
- Variable length

Frame Check Sequence

- FCS code
- Error detection
- 16 bit or 32 bit CRC code

HDLC Operation

- Exchange of I-frames, S-frames and U-frames
- Three phases
 - Initialization
 - initiated using U-frame to setup the link
 - Data transfer
 - uses I-frame to send user data and S-frame for ACK
 - Disconnect
 - uses U-frame to disconnect the logical link

Link Access Procedure Balanced (LAPB)

- Synchronous serial transmission to manage frame between DCE and DTE
- Support popular protocols
 - X.25
 - Frame Relay
 - -ATM

Link Access Procedure D-channel (LAPD)

- Layer 2 protocol for D-channel in ISDN
- Used to transmit messages over D-channel
- Evolved from LAPB X.25