

Materials Technology

Composite

Dr Jasmi Hashim

innovative • entrepreneurial • global

INTRODUCTION

Composite is a mixture or combination of at least two materials that differ in form, composition, properties (physical and Mechanical) and do not form a solution.

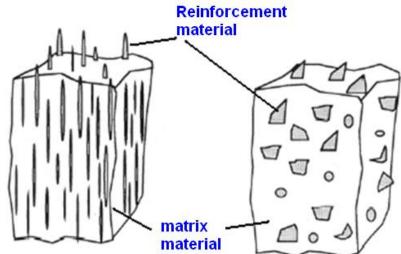
Multiphase material that is artificially made.

Consist of matrix (continuous phase) and reinforcement (discontinuous phase) and surrounded by matrix

Matrix material:

Can be a metallic, polymeric, or ceramic

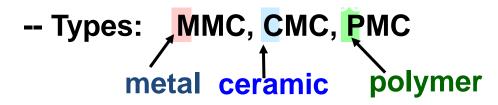
Protects the fibers from mechanical

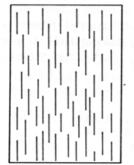

damage

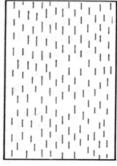
Transfer stress to dispersed phase

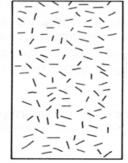
Reinforcement material (RM): -

Hard and brittle ; SiC, Al_2O_3 , glass, graphite, B. In the form of Fibre, short fiber or particle


Min. 5 vol. %



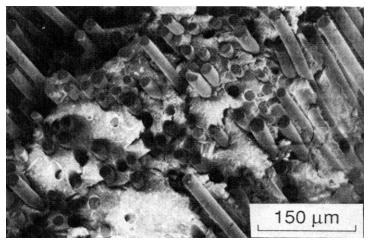

COMPOSITE CLASSIFICATION



Continuous

and aligned

Discontinuous


Discontinuous (short and aligned) and random

• Dispersed RM phase:

-- Purpose:

MMC: increase σ_v , *TS*, creep resist. **CMC**: increase K_{lc} **PMC**: increase *E*, σ_v , *TS*, creep resist.

Final Mechanical Properties will depend on the type and volume fraction of RM

Fracture surface of glass-SiC composite

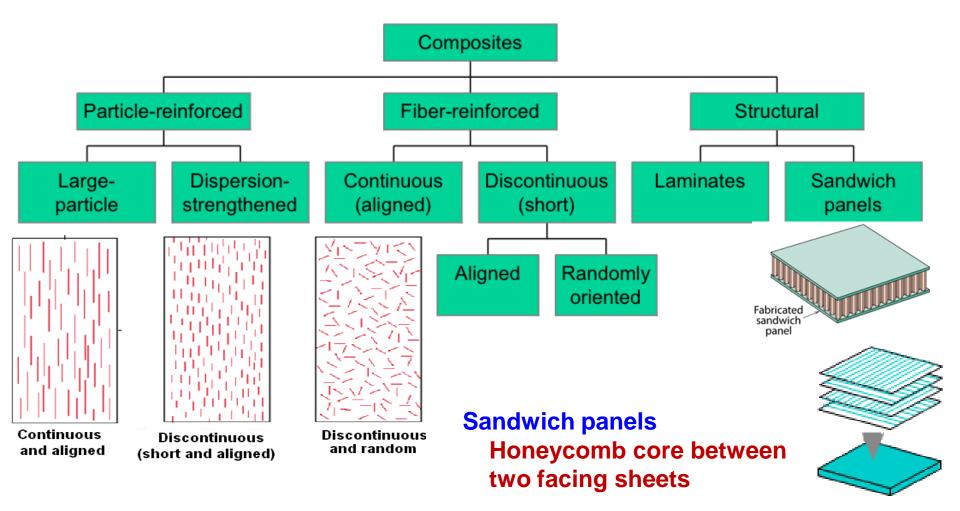
Reinforcement Phase

Whiskers - thin single crystals - large length to diameter ratios

- high crystal perfection extremely strong, strongest known
- very expensive and difficult to disperse

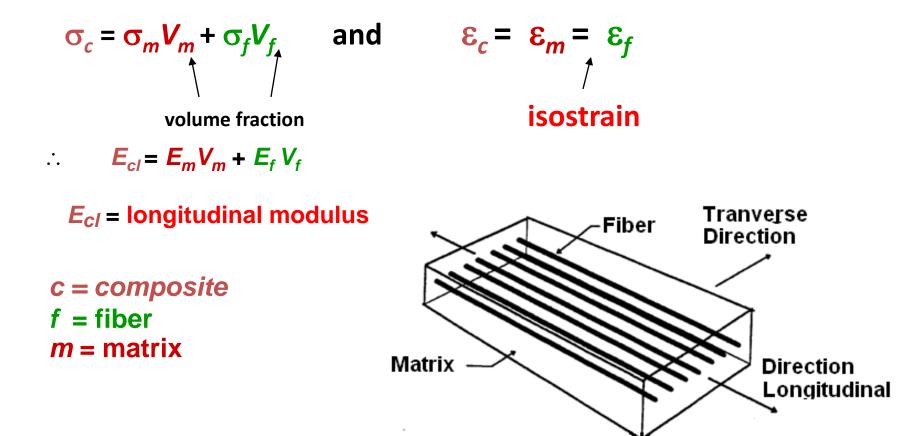
Fibers

- polycrystalline or amorphous
- generally polymers or ceramics
- Ex: alumina, aramid, E-glass, boron, UHMWPE


Wires

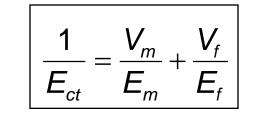
- metals steel, molybdenum, tungsten
- The ability to strengthen a composite using a fiber reinforcement depends on :
 - Fiber Properties
 - Fiber Geometry
 - Interfacial bonding with matrix

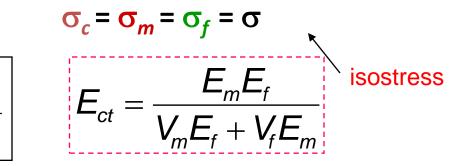
ocw.utm.my


Laminates -Stacked and bonded fiber- reinforced sheets Stacking sequence: e.g., 0%90%

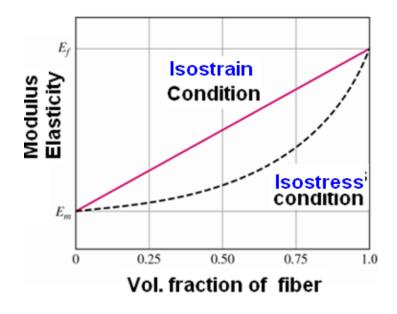
Continuous fibers - Estimate fiber-reinforced composite modulus of elasticity for continuous fibers

• Longitudinal deformation




ocw.utm.my

In transverse loading the fibers carry less of the load


 $\varepsilon_c = \varepsilon_m V_m + \varepsilon_f V_f$ and

E_{ct} = transverse modulus

c = compositef = fiberm = matrix

Higher modulus values are obtained with isostrain loading for equal volume of fibers

$$\rho_{c} = \rho_{f} V_{f} + \rho_{m} V_{m}$$

$$\sigma_{c} = \sigma_{f} V_{f} + \sigma_{m} V_{m} \quad (\sigma = TS)$$

Since σ = E ϵ and ϵ_{f} = ϵ_{m}

$$\frac{P_f}{P_m} = \frac{\sigma_f A_f}{\sigma_m A_m} = \frac{E_f \varepsilon_f A_f}{E_m \varepsilon_m A_m} = \frac{E_f A_f}{E_m A_m} = \frac{E_f V_f}{E_m V_m}$$

 $P_c = P_f + P_m$

 From above two equations, load on each of fiber and matrix regions can be determined if values of E_f, E_m, V_f, V_m and P_c are known.

OPENCOURSEWARE

The volume fraction of fibers (V_f) in a composite is defined as :

$$V_{f} = \frac{v_{f}}{v_{c}} = \frac{\text{Fiber Volume}}{\text{Composite Volume}}$$

The weight fraction of fibers (W_f) in a composite is defined as :

$$\left| \mathbf{W}_{\mathrm{f}} = \frac{w_{f}}{w_{c}} = \frac{\rho_{\mathrm{f}} v_{f}}{\rho_{\mathrm{c}} v_{c}} = \frac{\rho_{\mathrm{f}}}{\rho_{\mathrm{c}}} V_{f} \right|$$

Example:

A continuous reinforced composite is to be produced with 60 vol % of fiber by using the following materials :

	Density (lb/in ³)	TS (Psi)	Elastic Modulus (Psi)
Ероху	0.043	8400	550 000
Carbon	0.065	305 000	58 000 000

Calculate :

- i. Density of the composite (0.0562 lb/in³)
- ii. Weight percentage of fiber (0.694)
- iii. Tensile strength of the composite (186,360 Psi)
- iv. Elastic modulus of the composite (35 020 000 Psi)

POLYMER MATRIX COMPOSITE

The easiest composites to form given the low temperatures needed to process the matrix

Glass and Carbon polymer reinforced composites

- * Glass reinforced polymer composites are more common in marine, automobiles and other industrial applications
- * Raw materials, cheap, relatively easy to make

Polyester and epoxy resins are the two important matrix materials. Polyester resins: Cheaper

* Applications: Boat hulls, auto and aircraft applications.

Epoxy resins: Good strength, low shrinkage.

* Commonly used matrix materials for carbon and aramid-fiber composite.

ocw.utm.my

innovative • entrepreneurial • global

ocw.utm.my

Example of PMC

- Fiberglass-reinforced polyester resins: * Higher the wt% of glass, stronger the reinforced plastic is. Carbon fiber reinforced epoxy resins: * Carbon fiber contributes to rigidity and strength while epoxy matrix contributes to impact strength..
- Glass fiber reinforced plastic composite materials have high strength-weight ratio, good dimensional stability, good temperature and corrosion resistance and low cost.
- Boron fiber reinforced plastic golf-club shaft, tennis racket, fishing rods, sailboards
- S-glass fiber-epoxy resin : Helicopter blade
- **Glass- epoxy : composite Ladders (do not conduct electticity) (AI)**
- **UHMWPE fiber in TS matrix** : Military helmet –. (Mg-steel)

Example of PMC fabrication metdhods

Hand lay-up process:

- * Gel coat is applied to open mold.
- * Fiberglass reinforcement is placed in the mold.
- * Base resin mixed with catalysts is applied by pouring brushing or spraying..

Spray-up process:

Continuous strand roving is fed by chopper and spray gun and chopped roving and catalyst resin is deposited in the mold

ocw.utm.my

innovative • entrepreneurial • global

METAL MATRIX COMPOSITE (MMC)

Metal as a matrix material

Matrices: AI, Cu, Mg and Ti, Iow temp fluidity

Reinforcements : Carbon, SiC, B, Al₂O₃...no glass

Advantages:

Higher specific modulus & strength

Better properties at elevated temp

Better creep resistance

Lower CTE

Better wear resistance

Example of application

Rangka basikal lumba lasak, golf club, engine block

Aerospace application :

Cu- C combustion chamber Cu-SiC nozzle (rocket, space shuttle) Al-SiC housings (pump, satellite) Al-C : wings, blades,

innovative • entrepreneurial • global

MMC FABRICATION METHODS

Two types

- i. Solid state processing method
- ii. Liquid state processing method

Main problems between matrix and RM :

- i. Chemical reaction
- ii. Wettąbility

Solving methods :

- i. Control temperature
- ii. Use high wt% Si for Al alloy

Solving methods:

- i. Wetting agent eg Mg
- ii. Coating of RM with metal
- iii. Heat treatment (RM)

Example of MMC fabrication methods

1. STIR CASTING

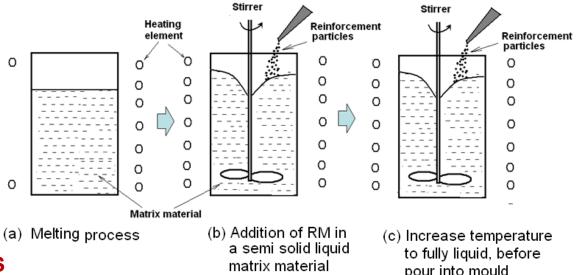
Suitable for discontinuous RM Method :

- i. Melting matrix materials
- ii. Stir Vortex

Heating Reinforcement element particles 'n О Matrix material

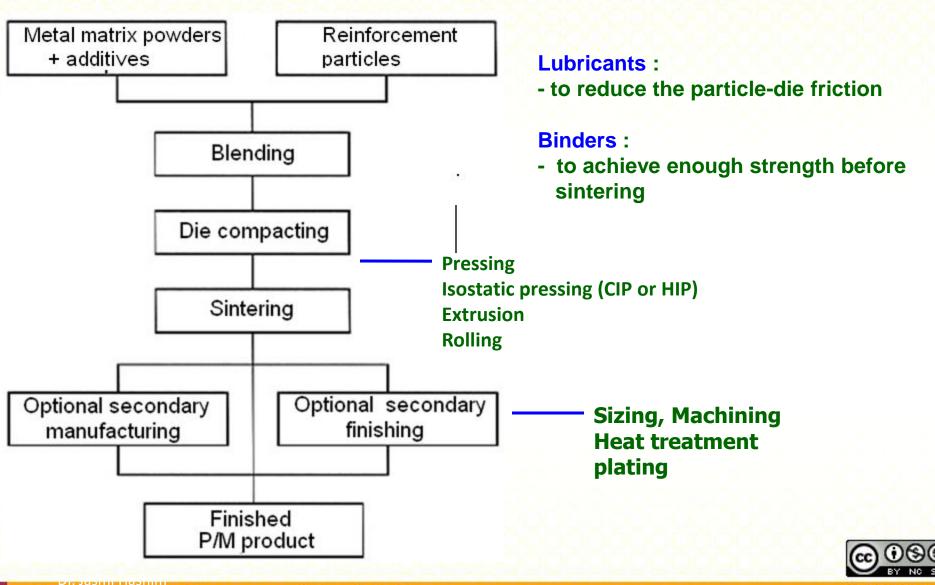
Stirrer

- iii. Incorporation of RM, slowly. Eg 5g/min
- iv. Stirring continuously
- v. Pouring into a mould



2. RHEO CASTING

Suitable for discontinuous RM


Method :

- i. Melting matrix materials
- ii. Stirring Vortex
- iii. Control temperature to semi-solid state
- iv. Incorporation of RM, slowly. Eg 5g/min
- v. Increase temperature to fully liquid state
- vi. Stirring continuously
- vii. Pouring into a mould

3. POWDER METALLURGY

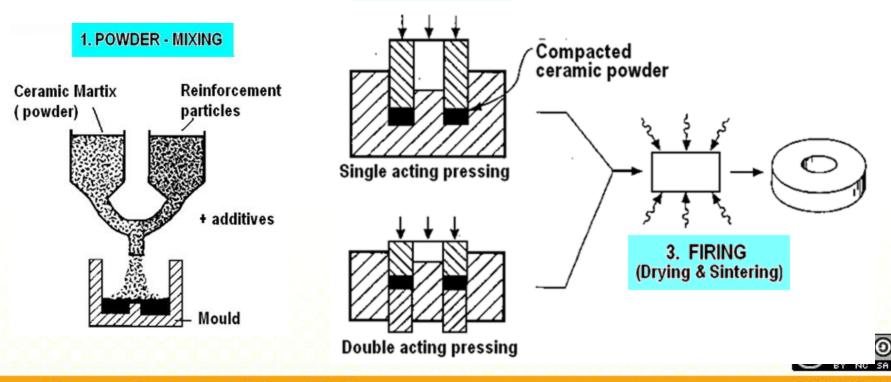
innovative • entrepreneurial • global

CERAMIC MATRIX COMPOSITE

Ceramic as a matrix material Matrices: Al₂O₃, C, LAS Reinforcements, ZrO₂, Carbon, SiC, TiB₂, Sl₃N₄

> Example of application : Brake disc for racing car and jet, Gas turbine component such as nozzle, Biomedical implant (spt tulang tiruan)

- Continuous fiber reinforced CMCs:
 - SiC fibers are woven into mat and SiC is impregnated into fibrous mat by chemical vapor deposition.
 - SiC fibers can be encapsulated by a glass ceramic.
 - Used in heat exchanger tube and thermal protection system.
- Discontinuous and particulate reinforced CMCs:
 - Fracture toughness is significantly increased.
 - Fabricated by common process such as hot isostatic pressing.



CERAMIC FABRICATION METHODS

1. Mixing and Pressing

Same as being used for ceramic powder processing Mixing : ceramic powder + reinforcement particles + additives Compaction – green body Firing : Drying and Sintering. 2. DRY PRESSING

ocw.utm.my

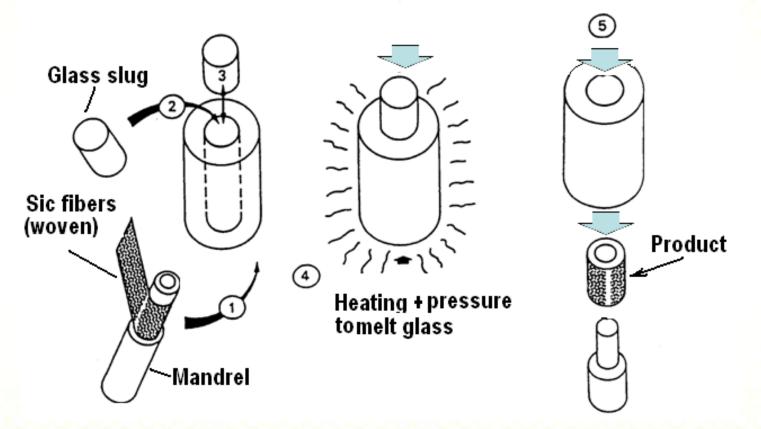
innovative • entrepreneurial • global

2. Sol Gel Processing Sol = precipitates of fine particles ~ 100 nm (from chemcial reaction) Eg : ZrOCl₂ + NH₃ + 3H₂O → 2NH₄Cl + Zr(OH)₄

Gel = high concentration of sol

Processing steps

- 1. Preform preparation (continuous fiber)
- 2. Pouring sol into preform
- 3. Drying
- 4. Repeat step 1-3 until the desired density is achieved
- 5. Drying and Sintering


ocw.utm.my

innovative • entrepreneurial • global

3. Matrix Transfer Moulding)

Suitable for continuous fibre + glass matrix

innovative • entrepreneurial • global

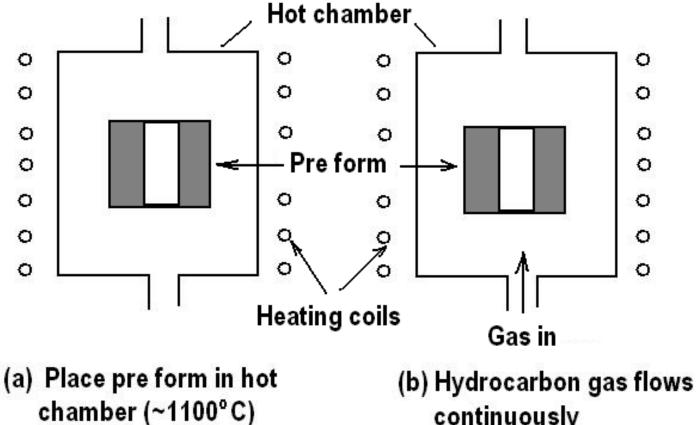
4. Chemical Vapour Deposition

Example : To produce C-graphite composite

Matrix material : Carbon Hydrocarbon gas such as methane, propane, or benzene

Reinforcement materials : graphite fiber

Method : .


- 1. Prepare a pre form (graphite fibers)
- 2. Hydrocarbon gas flow into the hot chamber (1100°C),
 - thermal decomposition of hydrocarbon gas

 $CH_{4(gas)} \longrightarrow C_{(solid)} + 2H2$

- 2. Carbon will deposited on pre form (Graphite fibers)
- 3. Proceed required density

ocw.utm.my

continuously

Chemical vapour deposition (CVD)

References

- K. G. Budinski and M.K. Budinski, Engineering Materials, Properties and Selection, 9th Ed, Pearson and Prentice Hall, 2010
- J. F. Shackelford, Introduction to Materials Science for Engineers, 6th Ed., Pearson and Prentice Hall, 2005.
- J.A. Schey, Introduction to Manufacturing Process, 3rd Ed., Mc Graw Hill, 2000.
- J. A. Jacobs and T. F. Kilduff, Engineering Materials and Technology, Structure, Processing, Properties and Application, 5th ed., Pearson & Prentice Hall, 2005.
- G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, 3rd ed., 1991
- W. D. Callister, Mater. Science and Engineering An Introduction, 8th ed., John Wiley & sons, Inc, 2011
- W. F. Smith, Principles of Materials Science and Engineering, 4rd ed., McGraw Hill, 2007.