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Ensemble (also statistical ensemble or thermodynamic

ensemble)
-introduced by Gibbs 1 1878

-an ensemble 1s an idealization consisting of a large
number of mental copies (possibly infinitely many) of a
system, considered all at once, each of which represents a
possible state that the real system might be in.

ENSEMBLE : Synonyms
1. totality, entirety, aggregate
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There are three types of canonical ensemble:
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OPENCOURSEWARE

1. Microcanonical ensemble: the ensemble 1s 1solated

-the energy of the system, U 1s constant.

-the total energy of the system does not fluctuate.

-the system can access only those of 1ts micro-states that
correspond to a given value E of the energy.

-The internal energy U of the system 1s then strictly equal
to 1ts energy. E.
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(Ensemble of systems)
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(Bath at temperature 7)

1. In microcanonical ensemble, each system
has constant N,V and E.
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2. Canonical ensemble: the system 1s in thermal

equilibrium with a heat reservorr at temperature 7
-the energy of the system. U 1s not a constant: the
temperature 1s constant.

3. Grand canonical ensemble: the system 1s 1n contact
with both a heat reservoir and a particle reservoir
-the U and N of the system are not constant
-the T and the u are constant.
(The u 1s the energy required to add a particle to the
system.)
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OPENCOURSEWARE
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Microcanonical Canonical Grand Canonical

U constant; U constant; T, p constant;
N, V, E constant; T not constant; U, N not canstant; _
Isolated Heat reservoir Heat and particle reservoir
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Probability of being 1n a certain state

Note: 1.probability, p «Q
2.S=kInQ

3 AS :%(AU + PAV — uAN)

Consider a system Ap = Ar + Aa

Ag: reservoir
A,: microscopic system
Ao. 1solated from the rest of the universe




The number of the accessible states,
Q=05 Q4
Let, r: one state of the A, therefore Q,= 1
The probability the system Ay 1n that particular state,

mQR=€Wk

P.,=Qpg=QpQA=Qp =¢

To be 1n the state r. the A, takes AU, AV & AN from the Ay
————— reduce Ap entropy (1*' Law)

AS . = —;—(AU + PAV — uAN)

: 1
Reservoir entropy S, =589 - ?(AU + PAV — uAN)

o . .. -
Sk : initial reservoir’s entropy
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The probability eq.

F

P« exp iT[Sf —;—(&U + PAV — uAN) |

Or

Ic

1
P, = Cexp - E(&U +PAV — uAN)  x

(C: constant
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Consider TWO cases:

1. a group of particles that can occupy any of
several different quantum states
--- (classical statistics)

2. certain quantum state that could be occupied by
various number of particles (quantum statistics)
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Case 1:

1. agroup of particles that can occupy any of
several different quantum states
--- (classical statistics)

N: fixed AN = 0
PAV << AU, ---1gnored PAV

1 T AT7 AN ;
Eq(®): |5 =Cexp 7 (AU + PAV = paAN) s

L

C: constant

1
AU
(av)

P},:Ce}:p—’

Bu | P =1 c{zeﬂ

Therefore
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The probability of the microscopic system being in
state r of energy U,

P =Cexp- (U,

Uy U U; Uy Us; Us Uy

-the lower the energy of a state, the higher the
: probability that the system 1s 1n 1t. s




Case 2:

2. certamn quantum state that could be occupied by
various number of particles (quantum statistics)

1

-

18

P, = Cexp -

(AU + PAV ~ uAN) (%

C: constant

-consider A, as a single quantum state
Volume: fixed (AV=0)
The probability the system 1s in configuration r,

P =Cexp - %(A U — J“&N)

—L{iﬁ.{;" — AN )

P =Ce
)
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Let n:number of particles 1n state r
£,. energy per particle in state r




The ratio  Let Pi=C e
And P;=C e
P;: the probability 1n state 1
P;: the probability 1n state |

LT.T'
P, Ce M WU/
—L = — =9 kT
P Y,
J Ce T

Up: ground state

U;: excited state

& Py probability in the ground state
P,: probability in the excited state
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The ratio - ETI oL
i = Ce =g ) kT
P Yo
0 Ce T
Then P
It (U; — Ug)=> kT —L =0
all the particles are 1n the ground state P 0

-low probability of excitation

If (U, — Up) << kT
i Y0 -high probability of excitation
P

0
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Defined excitation temperature, T. as

1
Te = E(Ul o Uﬂ )
for T<<T. means (U; — Uy)==>kT




Degeneracy

-when several quantum states all have the same energy—
that energy level 1s degenerate

If n, states all have energy U, --- ‘U, 1s n,-time degenerate’

Py, The probability the system has energy U,
P,: the probability the system 1n state r

PU;. :an*
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Energy Band

The f;)'rmula

Ur
kT (U1-Ug)
P, _ Ce _
P Yo
0
Ce kT

For a system to be 1n any single quantum state of energy U,
to another quantum state of energy U,
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ground states

-normally a system can has many excited states and many

-solution

_Ue
> Ce ©
C
P |
any excited st e
P Y
any ground st kT
> ce
g

c
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Assume U, & U, constant

any  excited st

n.: number of excited states

n,: number of ground states
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U.- U,

|

AU,

AU,

'

;% 1. excites states

(P/P,) ~ (n./ng)eFle -V

_r% n, ground states




The Equipartition Theorem

-to determine the mean value of energy stored 1n any
degree of freedom

-applies only to systems whose energy in the form

U=bq

q: coordinate or momentum variables (X. p,. L,....)




OPENCOURSEWARE

The probability for a microscopic component 1s 1n a certain
C _ (Ze-ﬁES)-l
PS — (Ze-BES)-le-BES

state s, with energy E.. 1s

P = CePE®

Where

Let’s take a particle (can be electron)
Energy in a degree of freedlom  E =bq’
-deg of freedom: x-portion of KE = 1/(2m) pf
-deg of freedom: y-portion of PE = ¥ ky”
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The probability for a microscopic component 1s 1n a certain
state s, with energy E.. 1s

PS — (Ee-BES)-le-BES

The mean value of the energy

1
EZPSES{ZE’BES} ZE_BESES
S S S

A A
| | q

dq

Note: number of quantum states 1n iterval dq « dq
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Number of states = C dq,  C: constant

Large number > |
e 11 o0
— 2 2
E = J.dqe_ﬁbq J.dqe_ﬁbq (qu)

Integrating (replace (bq®) dq = (1/2) d (bq”)
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If there are v degrees of freedom. then the mean mternal
energy per molecule will be given by

Where T 1s the absolute temperature,
k 1s Boltzmann’s constant

Or

The mean internal energy associated with each degree of
freedom of a monoatomic 1deal gas 1s the same.

The components of velocity can be either linear or angular.
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A LITTLE CAPTION OF
TANGKUBAN PARAHU, INDONESIA (2009)
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