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The system exerts force F against the piston of area A, and
the piston moves distance ds,

The work done by the system,
OW =F. ds =P (A ds) = PdV

Note: OW is inexact, can be changed into exact diff. dV
OW. (1/P) ..... exact

And  0Q .(I/T) .....exact, dS ,entropy




(*)
1* Law (exact differential form) ~ Where U=U (T.,S,P)
dU = TdS - PdV + pdN =P, V. N)
T=T(@P,u, N)........etc..
From (%) change in entropy,
AU | P U from (*)
T - (g] dS=—dU +—dV—=dN
: V.N T T T
_ (B_U]
AV )y if S=S(U, V, N)
- (20) . . .
d
S fa dS= (ﬁl dU+(§) dv+(§) dN
U VN Vv SN N SV

080




Comparing the above 2 equations:

I (dS
and T (ﬁ)m e, thermal nteraction
P (dS
T [WLN , ........mechanical (work) int.

N
T (ﬁly .......... diffusive (particles) int.




mechanical interaction.

£=[B_S] S=kInQ
T JV U N

P=kT(aan] =kT(an)
V' Jy AV )y y

Q
m=.r’_‘k.ln£l=ln£l2 —InQ, =In—=
kT Q)

or

or Q, o PAV AT

Q,
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1* Law: AU =AQ - pAV + nAN

but AU=AN =0, then AQ =PAV
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Expansion

When heated — materials tend to expand
Gases: increase the force & frequency of collisions with
the container wall, --- pushing outward.
Solid & liquid: oscillate with greater amplitudes,
increase the intermolecular spacing ---expand !!

Coetticient of volume expansion, Y ---- a measure of the
relative increase in volume per unit increase in temperature.

_ | [81«" ]
V= v ioT /),
Note: generally Y= y(T,P ) but most expansions are at

atmospheric pressure, --- const. pressure.
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For small change in temperature, V=V (T)

dV

AV = (
aT

] AT = VyAT

o, coefficient of linear expansion
a measure of relative increase in length (X)

oa=o (T, P)
M—(BX] AT = Xa AT
T J,

relation : o and y

V=V+AV=V(l+yAT) (9]
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V'=V+AV=V (147 AT) ()
But  V'=X'YZ=X(1+aAT) Y(1+0AT) Z(1+aAT)
= XYZ (1+0AT)’
= V(1+0AT)?
= V(1 + 30AT +... ) (7o)

for small AT, ... AT?= 0

therefore , from (%) & (%),

y:S(x

2)(5)
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Isothermal compressibility (symbol: k)

-a measure of relative change in volume per unit
Increase in pressure (temperature: constant)

1(avj
K=——| —
V>iopP ),

k=k(T.P) and V=V(P.T)

AV = (a—v] AP =-VKAP
T

0P

1
bulk modulus . ==V
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The Difttusive interaction

Chemical Potential (symbol: p)

(in many cases, Free Energy is used instead of chemical potential)

The chemical potential : the change in the energy of the
sytem when an additional constituent particle is introduced,
with the entropy and volume held fixed.

U

H = AT ‘
Il.\ (.}JIP‘\' /" _5':'5_.-"

e [texpress how eager system is for particles.

e [n equilibrium, it is equal in two systems placed in
diffusive contact.

e Particles move form a region of high chemical potential
to a region of low chemical potential.

e [t can be found by differentiating themodynamic

potentials with respect to N.
|@ G)@@|
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OPENCOURSEWARE

..: AN

AU is released when AN energyless
f,i.f particles are added

s

S AN : a known number of particles

are added into the system.

The gain in thermal energy is AU.
LWAN=-AU
AU

AN

note: - AU : inside the potential ,, — _
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L and temperature

SR @CD i olhad

Ip and pressure |

at higher P. particles are closer . increase the strength of
interactions :attractive (reduce u ) or repulsive (increase L)

| 1L and particles concentrationl

will increase or decrease --- depending on the nature of the
interaction.
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the chemical potential mcreases as
o the mnternal energy. U, of the phase increases.
o the entropy. S, of the phase decreases at a given
temperature, T.
o the volume, V mcreases for a given pressure, P.

components that possess HIGHER U are destabilized
relative to those with LOWER U
components with LOWER S are destabilized relative to

those with HIGHER S.
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Equilibrium Conditions

S,
;

R

. EL e
TR LA T AT : -..}-.E'-'f--?-';p..:-....i- P A.?

ffffffffffffffffffffffff

Let A; and A, : interacting — thermally, mechanically and
diffusively
1" Law AU =TAS - PAV + uAN

1 P
or AS = —AU + —AV - EAN
I T T
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law of conservation
AUZ = —AUl
ﬁVz =—-A V]
ANZ = —ANI

the change 1n entropy due to redistribution of energy.
volume, or number of particles.

&SDZ&81+£\SE
AS, :{TI__TI_]‘&UW[? - ?}avl—[";l - *‘;?]gyl_(*)
1 2 1 2 1 2

at equilibrrum, entropy 1s maximum

&SD_O_{I - 1}Mfﬁ[ﬁl—P?]M’l—[”l—”?}mvl

r, I, I, T, I T,




theretore
N 0 PP 0
Tl T? Tl TZ
Hy o Hy 0
T T
and
I, =1, P, =P, i1 — M2

For 2 systems mteracting thermally. mechanically and
diffusively are 1n equilibrium.

Approach to equilibrium (not yet in equilibrium)

ASy =0




Let A; and A, : interacting — thermally, mechanically and

diffusively
15 Law: AU, =AQ, - PAV, + u, AN,
using (*)
1
AS, = - - J(AQI—PIAV1+;LIAN1)+
2

1

Tl
Pl_Pz AV, — Hy H, AN
T, T ‘ T, T !

2 1 2

2 2 2

1 1 1 1
AS, = {T_I_T_JﬂQlﬂL T_(PI_PE)&VI_T_(ﬂI_ﬁE)ﬁNI )0

—
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- 1 I 1
therefore (T1 i ]; 0.0 : - (P, —P,)AT,)0

9

“

1
- (44, — 1y JAN, )0

from the three equations:

1.1f Tl::* Tj, _’\Ql < 03 and if Tg :::’Th ﬂQl}O
interacting thermally: heat flow from hotter towards
the cooler. NOT vice versa

2. ifPl:z* Pgt _\\Tl =0, and 1f Pg :::Z’qu_ A\rl < ()
int. Mechanically: volume 1s gained by the system

having higher pressure at the expense of the other,
and NOT vice versa.

3.1f W= o, ANy < 0, and 1if (o =y, AN =0
int. diffusively: particles flow from the system with
higher p toward the one with lower u, and NOT
vice versa.
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u and Q)

Let A; and A, : interacting — thermally. mechanically
and diffusively

dU =TdS — PdV + udN

and } _(8[])
cN s v

Praw e b o o P Ry

T T T
1f U and V constants

oS
55, el
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but S=kilnQ

—u:kT(anJ _____________ ($)

oN

Q. accessible states — increasing function of number of

particles.
uneg. or dS/dN pos. — attract particles

i pos. or dS/dN neg. — release particles

let AN — energyless particles added to a system at
constant volume. From (S)

AlnQ=—t1 AN

AlnQ) = lnﬂz — anl = ln% but

1

o~ (AN /KT)

@ [o]e 9'
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Ideal Gas
a hypothetical gas with molecules of negligible size that
exert no intermolecular forces

their energies are entirely kinetic
for 1 molecule. mass m and momentum p

2
P | B | B | G
- 4+ — 4+ —
2m  2m Px 2m Py 2m Pz

£ =

each molecule : 3 degrees of freedom
for N molecules : 3N degrees of freedom

number of quantum states available (6 dim.)
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Six-dimensional space

Six-dimensional space is any space that has six dimensions,
that is, six degrees of freedom, and that needs six pieces of
data, or coordinates, to specify a location in this space. There
are an infinite number of these, but those of most interest
are simpler ones that model some aspect of the environment.
Of particular interest is six-dimensional Euclidean space, in
which 6-polytopes and the 5-sphere are constructed.
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Uniform polytopes in six dimensions

6-simplex A Y )

In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices,
21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-

simplex 5-faces. Its dihedral angle is cos™'(1/6), or approximately 80.41°.
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AxAyAzAp Ap Ap .
Q 1 particles = 3
h
= (const) AXAyAzApAp,Ap,
for N particles

N N :.: 1
QN parfim'esz ngz = hg,}dxl dJ’Z dzz dp ix dp@, dp iz
i=1 i=1

limit: volume V
and let U = total energy of the gas

1 N
Qy particles — [thVN J. H dpitdpiydpiz (%)
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B4p+ A Pt pra=2mU

simce

-integral 1n (*) 1s equivalent to over the surface of a 3N
dimension sphere of radius (2mU)""*

-surface area of 3N-dim. Sphere o (radius)
= (radius)™

QNPaJ'HcEeS * VN( V sz)SN

= (const)(2m)*"" 2V U

(N-1) o

()

N particles

Q

= (const)V'U"'?

N particles

080




3

S =k In Q2 = (const)+ NkInlV +—NkInU

ideal gas ideal gas 2

using (asj 1 ’ [GSJ P
e R
Thermal ==\ O U r OV )y o T

U
interaction I

3 Mechanical
V:constant 55 — Nk | | interaction
— | =0+0+ =
[GUJF U T
3
U = 2— NkT
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U:constant
(a_S) — (0 + N_k_|_ 0 = E
aov J; V T
PV = NkT

........... 1deal gas law

........ gas model




- degrees of freedom may be larger than 3

U = 2 NkT
2

Real gas

where v 1s degrees of freedom (we will use R for gas
constant)

- mutual interactions and sizes cannot be 1gnored
le v : molar volume
R = Nak : gas constant

Pv=RT
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Compress gas, will become liquid, and cannot

compress anymore
b = molar volume of liquid phase — limit on the molar

volume

vV — V-b

mutual interaction — reduce the velocity of molecules

hitting the wall or pressure sensor
real pressure 1s higher than the measured one

P —( P + mutual attraction)

Mutual attraction oc 1/(v*)




Incorporated the two effect into the gas law

van der Waals equation of state
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OPENCOURSEWARE

No good model for hiquid yet
Can use van der Waals equation with modification

quUJd ‘ -liquid phase. the volume = b
-pressure term
{P+ G,} J—>[P+i?]+f(b)
| V- L
where f(b) : due to other interactions (liquid)

since v = b : constant for liquid

%Jrf(b)xiqtf(b);::amr.

v h?
the modified van der Waals eq.

(P + const.) b=RT
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Sohids

Models for solids — have more than one components

One property of one component at a time
Ex. The heat capacity of the lattice alone

Solid — a lattice of atomic masses coupled by spring

Potential energy, €p = (1/2) kx”

When one atom vibrating — send wave down the
lattice

Quantum energy of the wave: called phonon
Phonon travel throughout the solid’s volume — ? phonon gas

Metal — conduction band: electrons in the conduction
band are mutually shared by all atoms — known as electron gas
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Example of application of the models

I.  heat capacity
let N: constant
dQ =dU + PdV

V: degree of freedom
U = (1/2) bNKT + Nu

dQ = (1/2) uNk dT + N du+ P dV

change in N du 1s small
dQ = (1/2) v R dT + P dV

per mol: dq:(l/Z) v RdT + Pdv .... (*)

R = N4 k -- gas constant




Molar heat capacity at constant volume

CV:(B_CIJ _ Y
o7 ), 2

since v= v(T,P) --- molar volume

dv:[a—v] dT +[ﬂj dP
oT ), P ).

from (), at constant P -——-—- dP=0

2)(5)
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or

—
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for gases, change in volume at constant pressure is large

For solid & liquid, change in volume at constant pressure 18
smaller ----- ¢p & ¢y nearly the same.

Example
1. Calculate ¢,-c, for an ideal gas
Ans: Pv=RT or v =RT/P

Cp — Cy = P(;—;]
: P

(Bv} _ R
adT P

¢ - P(B”J _p R g
, P




2. Calculate ¢p-¢y for va der Waals gas

(P R )(v —b)=RT

V
a and b are constant

Ans:

V \%
RT — (v—b)dP

| 2]

(dP —2—?631?](1} —b)+ [P +i2]dv = RdT

Pdy =

@999




note: for P >> a/v’ and v>>b

c,—c, =R . ideal gas

forP<<a/v’ and v=b

2)(5)
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3. Find an expression for the isothermal compressibility
of an ideal gas

Ans:

S W)t
K= S lop compressibility
T
Pv =RT
Pdv = RdAT — vdP

P ), or vloP ) P




4. Find an expression for the isothermal

compressibility of a van der Walls gas

Ans: a
(P + V—Z)(V —b)=RT

—dv = K=-—

S 1 P e A v
Pv-\ v

1 RT — (v —b)dP 1[31})
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Exercise:

Suppose the equation of state for some system was

1‘7*"21’1_%"’.{-3Hv =b
where a and b are constants

1. write this in differential form, expressing dV in
terms of dT and dP

1. Express the isothermal compressibility of this
system in terms of (T, V, P)

1. Express the coefficient of volume expansion for
this system in terms of (T, V, P)
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THE END.......
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