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AXIOM or Postulate

IS a proposition that is not proved or demonstrated but
considered to be either self-evident, or subject to necessary
decision.

Therefore its truth is taken for granted and serves as a
starting point for deducing and inferring other truths theory
(dependent).
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AXIOM 1 /Postulate 1

There exist special states of macroscopic physical
system, called equilibrium states, which can be fully
described by the internal energy, U, and a set of
extensive parameters, X,, X;, X,,.... X,

AXIOM 2/Postulate 2

For all system in equilibrium there exists a function of the
extensive parameters, called the entropy, S. If there are
no internal constraints on the system, the extensive
parameters can take the values that maximize S over the
possible states with internal constraints.




Macroscopic property > | Equilibrium State (ES)
(physical system)

fully described by

microscopic properties
(extensive thermodynamic

V
properties) ~ U , V , N ,S, .....

= S maximised

Intensive thermodynamic .~ |ndependent of the size of the
properties thermodynamic system: P, T, p

Extensive thermodynamic

L T o Ny .
properties Dependent: V,S, U, H,N, .....
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The functional relation between S and the extensive parameters
S=S (U, Xu, Xl,. : Xc)

Note: Xgcanbe V: Xj;canbe N,....

2 systems interacting thermally

oS
(ﬁl , no mechanical interactions

no exchange of particle
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Ag= A1 T Ay

U, + U, = AU,
same temperature,
= U, =0
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..............................

When A; and A, are 1n equilibrium:;

A @U — _aUz

The entropy Sy 15 at 1t maximum value

oS,

U,

IfS, = £ (U)) =0

4

Using Sg — Sl + Sg

oS, oS, oS,
_|_ .

oU, oU, oU,
. V.N .

V.N SV.N
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substituting 0U; = —adU,

(asﬂ] {551] (652] o
v, ), \eu, ), . \au, ), .

) oS, [ as,
au, M_ oU, ),

For 2 systems m thermal equilibrium,

oS
The property {@U J 1s the same— Temperature, T
VN




0S 1
Temperature 1s defined as {QU } T
V.N
d5, d5, 1 1
F i) = SO
Rk (6U ) (6U2) T T

Note: when 2 systems are in equilibrium, their temperatures are equal.

Therefore, for 2 systems of the same temperature in thermal contact,

0 11 a8, "—15‘
r, 1, \eu, ), lou,),,

. ( as, +S, )LN . ( @S? LN

U, ou,

Entropy of combined system is maximum at equilibrium
|® GJ@@|
ocw.utm.my

I innovative @ entrepreneurial @ global



Let A, in thermal equilibrium with A, A, in thermal equilibrium with A,

Therefore T, = T,
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Zeroth Law:

If two systems are each in thermal
equilibrium with a third system, then they
are in thermal equilibrium with each other.

Note:

I. Temperature Is the indicator of thermal equilibrium

l. All parts of a system must be in thermal
equilibrium if the system is to have a definable
single temperature.
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Entropy - a measure of the number of accessible states O

1

= measures the (1 which varies with the internal energy U.

. ( i j _ ¢ (k In QU)) Q) = U
T \aU - ToU Y ")y x| |But $2(U) = (const )U
Theretore ) 5 - <
T AU (kIn QUU)), , = o (k In(const )U ? ]
kR O FR( 1
= ,\C (In(const) +1InU) = ( j
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U 1s measured to the zero-energy reference level, N

Uthermal - Utotal - N”‘

Utotal = Uthermal T N

_ ;—kRT + uN

If each particle has v degrees of freedom,

hence R = vN

U U
Usotar = 5 NKT + Nyt = N(E KT + 1)
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Many common process. | does not change or very little

AU ~ ; NK(AT)

= Internal energy changes with temperature.

2)(5)
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OPENCOURSEWARE

L

Heat Flow DAY LR me———

ey
o e L A e

........................................

Ay and A, -- not yet in thermal equilibrium

QS:rES\ QUZE AS, = AS +5.Sﬁ:ﬂbl+&b3:>(}
_—rr | 0 1 2
\oU J, y T 1, 1,
1" Law AU, = - AU, If T,>T,, then AU;=0
AS, = AU, TL_L} >0 It T,>T,, then AU;<0
LR | 2

Note: if 2 interacting systems are not yet in thermal equilibrium, then the
2"d law demands that the energy must flow from the hotter system to the

cooler one, and not vice versa.
|® ®®@|
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Phase Transition (add heat, T unchanged)

1 (&S oS

7 o at higher T. the | 57; 1s smaller
_ V.N . VN

From S =k In Q(U)

Where  Q(U) = (const)U™*

'58) Rk 1

S=1%RklnU & (@ —Z(U):g
. V.N




U(xT)

Undergoing phase transition—

Add Heat, temperature remains constant
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2 reasons;
1) As heat 1s added. R increases, R/U constant

11) The added heat — releases particles from potential wells
(the zero-energy reference 1s higher)

Uthermal - Utcrl:al - N“

oS Rk 1
oU 2(U — Nu) T

from Q(U) = (const)UY*,  Q(U) = (const)(U-Np)*?

S =% Rk In (U- Nu)
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2 phase region a7 constant

N

boiling

¥ melting




Heat Reservoirs (add heat, T unchanged)

Heat reservoirs — sufficiently large systems that their
temperatures do not change when a small amount of heat 1s added
to or removed from them.

AQ — small amount of heat.
Taylor series expansion

as o’ )
S(U+AQ) = S(U)+(6UJ (AQ)+ —{aUz) (AQ) +....
Ignoring (AQ)* and higher
as
S(U +060)=S5SU o
(U +00Q) = S( )+(8UJ (00)
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_ o5
S(U +80)=5SU)+ [8U ]VJN(CSQ)

S(U +80)~ SU) = [%](59)

ds = 22
I

----- for any system, large or small
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OPENCOURSEWARE

Thermal interaction with reservoir

Ag
reservoir

LetU, : average Internal Energy for A,
So: entropy of the combined system (A;+A,)
Q),: accessible states for the combined system
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From fundamental postulate,

P (U;) = (const) Q, (Uy)

And So =k In Q, or Q =ef

P(U,) = (const )e *

Entropy of the combined system
So (U=U, +AU,)

Using Taylor series expansion

S, (U, =U, +AU,) =S, (U, = UH[&S‘J (AU)+1{SS] (AU, +..
au, )y 2\ U )

1

at equilibrium. Sy 1s maximum
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And

8 | _,
oU, J;

|

o0°S : oS, oS
2 — C (Sl+Sz): ‘ —+—=
oU, oU, U,

|

U, oU,
ofes as,) o1 1
oU\oU, oU,) oU\T T,

T,, reservoir temperature. -- constant

o (1 _0o
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And since U :R?kT
o (1L} @& [ Rk ) Rk
ou \ T ) ou,\ 2U, 2U°
Therefore oS, R
oul | U
And,

RE
4U

SD(U1:LT1+&U1):SU(U1:IT1)_ (AUI)E
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Put this into the probability equation

So(U;)—(Rk /14U > )(AU;)?

PU,) = (const )e k

5,0 | X (av,y?
= | (const e * |e*"

(AU ) /20"

(const )e

(c0) OO
Ot
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The probability the system has energy in the range U; and
U,;+dU, 1s proportional to the size of the range dU,

P (U )dU |, = (const )e_(ﬂ’U”“MEdUl

| PUyau | =1

Uy

(const) I e (AU HZ‘TEdUl = (const) I e_"mldUl
Ul Ul
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(const) I e “dU, = (const )\]j
Ul

(consf)f =1
a
/ 1
Therfore (COHSI)=\/E — .
T 2no
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For system 1n equilibrium with reservoir, the probability that the
system has energy 1n the range U and U+dU 1s

PANAU = —— @012 g
J2re?
With G = % U and AU:(U—E)
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SRR, Z S —

G =40ev

0, s

00 ev u

e.g: 2 systems & let €=lev
R =8 and R = 800

for degree of freedom
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Heat Capacity (The Storage of Thermal Energy)
-a measure of how much heat energy must be added 1n
order to raise its temperature by one standard unit.

General Definition

. If C; = Total Amount of Heat Energy required to raise the
temperature of some System by 1 °C, therefore Q =C1 AT :
where Ct 1s heat capacity (SI: J/ °C)

SPECIFIC HEAT CAPACITY

If ¢ = Amount of Heat Energy per kilogram that 1s required to
raise the temperature of one kilogram of the substance 1 °C,

therefore q=m ¢ AT ; where ¢ 1s specific heat capacity (SI:
I'kg.”C)
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MOLAR HEAT CAPACITY

If ¢ = Amount of Heat Energy per mole that 1s required to raise
the temperature of 6.022x10 * molecules of the substance 1 °C.

therefore Q = n ¢ AT: where ¢ molar heat capacity (SI: J/mole/
OC)

VOLUMETRIC HEAT CAPACITY of a SUBSTANCE

If ¢, = Amount of Heat Energy per unit volume that 1s required
to raise the temperature of one cubic meter of the substance |
°C. therefore Q = V ¢, AT. where cv 1s volumetric heat capacity
(SI: I/m’.°C ) Cy




Definition

Cy = (a—Q] - heat capacity at constant X
or ),

Two types of heat capacity

Heat capacity at constant pressure,

o2
AT ),

Heat capacity at constant volume

o[ 37]
AT ),
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Third law of thermodvnamics (Nernst's theorem)
Order & Disorder

LOW
ENTROPY

Only 1 way to make Many ways to randomly arrange
this arrangement the cards — higher probability




OPENCOURSEWARE

two different gasses separated by a partition will mix when the
partition 1s removed. increasing system disorder.

Entropy (S) 1s the thermodynamic state function that describe the
amount of disorder, -- a large value for entropy means high
degree of disorder
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Entropy changes

An Increase 1n disorder results 1n an 1increase 1n
entropy.

- S increases when solid - hiquid, hquid - gas
- S decreases when gas dissolves 1n a solvent
- S Increases as temperature mcreases
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Entropy, S°

Temperature (K)




Adding heat to the system.
-increases the number of the accessible states,
-increases disorder,
-increases the entropy.

-1
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Removing heat from the system,
-decreases the number of accessibles states
-decreases the disorder
-decreases the entropy

remove the heat until,

The number of accessibles state Q=1
FromS=kInQ=kIln(1)=0

o

HIGHER ENERGY
HIGHER ENERGY

HIGHER ENERGY >




OPENCOURSEWARE

third law of thermodynamics
the entropy of any pure, perfect crystalline element or
compound at absolute zero (0 K) 1s equal to zero.
-all molecular motion stops at 0K
-represent perfect order
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Absolute zero

Definition: The lowest possible temperature allowed by the laws
of thermodynamics.

At this temperature, molecules would possess the absolute
minimum KE allowed by quantum mechanics.

The temperature 1s equivalent to -273.15°C or OK (kelvin).

At absolute zero, the entropy of any system vanished.
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Or
The temperature at which all possible heat has been removed
from an object.

Absolute zero cannot be reached experimentally. although 1t can
be closely approached.

Cornell and Wieman cooled a small sample of atoms down to
only a few billionths (0.000.000.001) of a degree above Absolute
Zero!
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0 O
Note: entropy ds = T_
mCdT
3Q=mC dT as = =
cdT dT
AS:J.dS:J-m :mCJ.=
I T

1f C : constant

heating a sample from absolute zero to finite temperature T,
increases the entropy by.

T T r

AS:J’dS:J‘mCa’T :mcjdi

0 0 T ' T
:ST_S{]:S _OZST

= -ﬂ =~ E]
(©lose
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Example:

A sample of 1 kg is heated to 300 K from absolute zero. Determine the entropy
of the sample at 300 K.

(Take the specific heat of the sample as ¢ = 5T /2 J/kg.K

300

9300k = 9300k — V0 = A5 = as
0

T's0 T edT 300 57i/z g
:f_:f _:f =173 J/K
0 0 0 T
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Example:
The reaction A + B — C 1s carried out at 300 K. How much heat

is released (per kg) of C if ¢, = 5ST? J/kg K, cg = 8T"* J/kg K and
cc =15 T Jkg K.

Ans: AQ=TAS  and AS=S¢c—(Ss + Sg)
Sa (300K) = 173 Tke K o
S5 (300K) = 161J/kg.K o
Sc (300K) = 301 Jkg.K
AS = 173 -161+301=-289 J/kg.K

AQ = -289 x 300 = - 86.7 kJ/kg (heat is given out by the system)
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