THERMAL & STATISTICAL PHYSICS SSP3133

STATISTICAL MECHANICS: STATISTICS FOR SMALL SYSTEMS

- DR WAN NURULHUDA WAN SHAMSURI
 - Acknowledgement : PROFESSOR DR RAMLI ABU HASSAN

Probability: Mean value – single element system

Let P_s : probability the system in state S

 f_s : function when the system in state S $\bar{f} \approx$ mean value of f_s

Definition:

$$\overline{f} = \sum P_{S} f_{S}$$

Example 1:

1 coin: 2 states; H: head; T: tail

P_H: probability of landing heads is ½

 P_T : probability of landing tail is ½

Let say f_S is the number of head showing. Hence

$$f_S = 1$$
 for H and $f_S = 0$ for T.

The mean value for f is

$$P_H f_H + P_T f_T = (1/2)(1) + (1/2)(0) = 1/2$$

- The average number of heads per coin showing is 1/2

Example 2: DICE

n: no of dot upward = f_s if $f_s = n$, what is the mean value for the system? $P_1 = P_2 = P_3 = P_4 = P_5 = P_6 = 1/6 = P_s$ $\bar{f} = \sum_s P_s f_s = \bar{f} = \sum_s P_s n = (1/6)(1) + (1/6)(2) + (1/6)(3)$

 $+(1/6)(4) + (1/6)(5) + (1/6)(6) = 3 \frac{1}{2}$

if
$$f_s = (n-1)^2$$

 $\bar{f} = \sum_s P_s f_s = \bar{f} = \sum_s P_s (n-1)^2 = (1/6)(0) + (1/6)(1) + (1/6)(4) + (1/6)(9) + (1/6)(16) + (1/6)(25) = 9\frac{1}{6}$

Note:

f, g: functions of the states of systems

c : constant

Then
$$\overline{(f+g)} = \overline{f} + \overline{g}$$
 and $\overline{cf} = c\overline{f}$

-few elements system

Let p = the probability the criterion is satisfied q = the probability the criterion is **not** satisfied

Example:

i. criterion: a flipped coin lands head-up

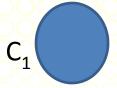
$$p={}^{1}\!\!/_{2} \qquad \quad and \qquad \quad q={}^{1}\!\!/_{2}$$

ii. criterion: a rolled dice lands with 2 dots up

$$p = 1/6$$
 and $q = 5/6$
 $p + q = 1$ or $q = 1 - p$

The probability the criterion is satisfied or not is always one

Example 3: 2 coins C₁ & C₂ (2 identical systems)



$$p_1 + p_2 = 1$$
 and $p_2 + q_2 = 1$

For each element, the criterion IS or NOT satisfied is

$$(p_1 + p_2)(p_2 + q_2) = 1 \times 1 = 1^2 = 1$$

= $p_1p_2 + p_1q_2 + q_1p_2 + q_1q_2$

 p_1p_2 – both elements satisfy the criterion

 p_1q_2 - element 1 – satisfy the criterion

element 2 – not satisfy the criterion

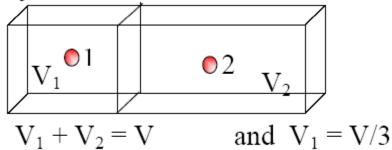
 q_1p_2 - element 1 - not satisfy the criterion

element 2 – satisfy the criterion

 q_1q_2 – both elements not satisfy the criterion

system: a box with 2 air molecules inside

Example 4: BOX 1



Criterion: all possible configurations
-The probability of either molecule in V_1 , $p_1 = 1/3$ & $p_2 = 1/3$

-The probability that each molecule is not in V_1 , $q_1=2/3$ & $q_2=2/3$

-the probability for all possible configuration

$$(p_1+q_1)(p_2+q_2) = 1x1 = 1^2 = 1$$

= $p_1p_2 + p_1q_2 + q_1p_2 + q_1q_2$

-both molecules in
$$V_1$$
: $p_1p_2 = (1/3)(1/3) = 1/9$

-mol.1 in V₁ & mol.2 in V₂:
$$p_1q_2 = (1/3)(2/3)$$

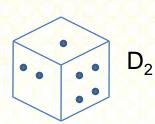
= 2/9

-mol.1 in V₂ & mol.2 in V₁:
$$q_1p_2 = (2/3)(1/3)$$

= 2/9

-both molecules in
$$V_2$$
: $q_1q_2 = (2/3)(2/3) = 4/9$

D₁



Example 5: 2 DICE

Criterion: one dot up for D₁ and D₂

Probability for one dot up: $p_1 = p_2 = 1/6$ Probability for NOT landing with one dot up: $q_1 = q_2 = 5/6$

$$(p_1 + p_2)(p_2 + q_2) = 1 \times 1 = 1^2 = 1 = p_1p_2 + p_1q_2 + q_1p_2 + q_1q_2$$

-one dot up for $D_1 \& D_2$: $p_1.p_2 = 1/36$ -one dot up for $D_1 \& not D_2$: $p_1.q_2 = 5/36$ -one dot up for $D_2 \& not D_1$: $q_1.p_2 = 5/36$ - not $D_1 \& not D_2$: $q_1.q_2 = 25/36$

Identical Elements: with the same Probability

A: For 2 identical elements

$$p_1 = p_2 = p$$
 $q_1 = q_2 = q$

The possible configurations;

$$(p_1+q_1)(p_2+q_2) = (p+q)^2$$

= $(p^2 + 2pq + q^2)$

p²: all satisfy the criterion 2pq: one satisfy – one does not q²: none satisfy the criterion

B: For 3 identical elements
$$(p_1+p_2)(p_2+q_2)(p_3+q_3) = (p+q)^3 = 1$$

$$= (p^3 + 3p^2 q + 3q^2 p + q^3)$$

p³: all satisfy the criterion

 $3p^2q$: two satisfy – one does not

3pq²: one satisfy – two do not

q³: none satisfy the criterion

For N elements
$$(p_1+q_1)(p_2+q_2).....(p_N+q_N) = (p+q)^N$$

but
$$(p+q)^N = \sum_{n=0}^N \frac{N!}{n!(N-n)!} p^n q^{(N-n)} = 1$$

Binomial Expansion

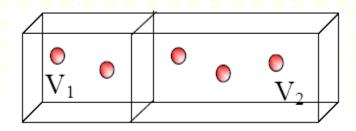
 $P_N(n)$: the probability the system in state of n elements satisfy the criterion and N-n elements do not

$$P_{N}(n) = \frac{N!}{n!(N-n)!} p^{n} q^{N-n} \qquad \frac{N!}{n!(N-n)!} \quad \text{Binomial Coefficient}$$

$$\frac{N!}{n!(N-n)!}$$
 Binomial Coefficient

-the number of different configurations of the individual elements, for which n satisfy the criterion and (N-n) do not

Example 6: BOX 2 – Consider 5 molecules in a box



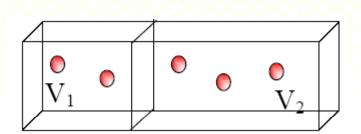
$$V_1 + V_2 = V$$

$$V_1 = (1/3) V$$

(i) find the prob. of 2 mol. in V_1 and 3 in V_2 p = 1/3 & q = 2/3N = 5, n = 2

$$P_5(2) = \frac{5!}{2!(5-2)!} \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^3 = 80/243$$

(ii) number of different possible arrangements for 2 mol in V₁ and 3 mol in V₂



$$V_1 + V_2 = V$$
 $V_1 = (1/3) V$

$$\frac{N!}{n!(N-n)!} = 5! / (2! \ 3!) = 10$$

State of a system relative to two different criteria;

-system of N elements in a state where;

n₁ elements satisfy 1st criterion

n₂ elements satisfy 2nd criterion

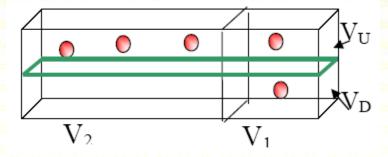
the probability $P_N(n_1,n_2)$

Note: an element's behaviour with respect to one of the criteria does not effect its behaviour with respect to the other 'statistically independent criteria'

 P_{ij} : the system in state i with respect to 1st criterion and also in state j with respect to the 2nd

$$\begin{aligned} P_{ij} &= P_i \;.\; P_j \\ \mathrm{Or} \qquad P_{ijk}..... &= P_i \;.\; P_j.\; P_k,\; \\ \mathrm{Where} \; i, \; j, \; k, \; \end{aligned}$$

Example 7: BOX 3



System: 5 mol.

-find: the probability for 2 mol in V_1 and 4 mol in V_U

$$V_U = V_D$$

$$N = 5;$$
 $n_i = 2;$ $n_j=4$

$$P_{5}(2.4) = P_{5}(2) P_{5}(4) = \frac{N!}{n!(N-n)!} p_{1}^{n} q_{1}^{N-n} \cdot \frac{N!}{n!(N-n)!} p_{2}^{n} q_{2}^{N-n}$$

$$= \left(\frac{5!}{2!3!}\right) \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^3 * \left(\frac{5!}{4!1!}\right) \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right) = 0.051$$

Note: Binomial expansion - correct for any size

$$P_N(n) = \frac{N!}{n! (N-n)!} p^n q^{N-n}$$

But for large N, N! can be calculated using Stirling's formula

$$l(N!) \approx N \ln n - N + (\frac{1}{2}) \ln(2\pi N)$$

Probability Distribution of Discrete Random Variables

A probability distribution is listing of all the possible values that a random variable can take along with their probabilities.

Example: to find out the probability distribution for the number of heads on three tosses of a coin:

1 COIN; 3 tosses First tossTTTTHHHH Second tossTTHHTTHH Third tossTHTHTHTH

Have a try first.....

Fill in the following table and compare your answers with that on the next page:

	NO OF HEADS	FIRST THROW	SECOND THROW	THIRD THROW	MACRO STATE
8					
8					

NO OF HEADS	FIRST THROW	SECOND THROW	THIRD THROW	MACRO STATE
0	Т	Т	T = 1	1
			_	
1	Т	Т	Н	2
	Т	Н	T = 3	
	Н	Т	Т	
2	Н	Н	Т	3
	Н	Т	H = 3	
	Т	Н	Н	
3	Н	Н	H = 1	4
			{1+3+3+1}	4 MACROSTATES

TOTAL

= 8 MICROSTATES

Hence the probability distribution is as follows:

No. of heads X	Probability P(X)	mean or expected value X.P(X)
0	1/8	0.000
1	3/8	0.375
2	3/8	0.750
3	1/8	0.375

Mean =
$$E(X) = \sum X.P(X)$$

where $E(X)$ = expected value,
 X = an event,
 $P(X)$ = probability of the event

$$\Sigma X P(X) = 1.5$$

 $\{0.0+0.375+0.75+0.375=1.5\}$

Binomial Distribution:

-discrete probability distributions

-Several characteristics underlie the use of the binomial distribution.

Characteristics of the Binomial Distribution:

- 1. The experiment consists of n identical trials.
 - 2. Each trial has only one of the two possible mutually exclusive outcomes, success or a failure.
 - 3. The probability of each outcome does not change from trial to trial, and
 - 4. The trials are independent, thus we must sample with replacement.

Binomial Distribution: Fluctuations

Suppose the following binomial distribution;

- · the probability of success: p
- the probability of failure: 1-p = q

the mean
$$\bar{n} = pN$$

N: the number of elements per system

 $\overline{\Delta n}$: average fluctuation of n about its mean value, \overline{n}

$$\overline{\Delta n} = \overline{(n - \overline{n})} = \overline{n} - \overline{n} = 0$$

-positive fluctuations cancel the negative one

the standard deviation

$$(s \tan dard \ deviation)^2 = \sigma^2 = \overline{(n-\overline{n})^2}$$

$$(s \tan dard \ deviation) = \sigma = \left[\overline{(n-\overline{n})^2} \right]^{\frac{1}{2}}$$

$$\sigma^2 = \overline{(n-\overline{n})^2} = \sum_n P_n (n-\overline{n})^2$$

$$= \sum_{n=0}^{N} \left(\frac{N!}{n!(N-n)!} p^n q^{N-n} \right) (n-\overline{n})^2$$

Solving----
$$\sigma^2 = Npq$$
 or $\sigma = \sqrt{Npq}$

$$\sigma = \sqrt{Npq}$$

relative fluctuations

$$\frac{\sigma}{\overline{n}} = \frac{\sqrt{Npq}}{Np} = \sqrt{\frac{q}{NP}} \propto \frac{1}{\sqrt{N}}$$

Binomial Equation: able to identify three things;

- the number of trials
- the probability of a success on any one trial
- the number of successes desired

$$P_N(n) = \frac{N!}{n!(N-n)!} p^n q^{N-n}$$

Example 8: Binomial Distribution

What is the probability of obtaining exactly 3 heads if a fair coin is flipped 6 times?

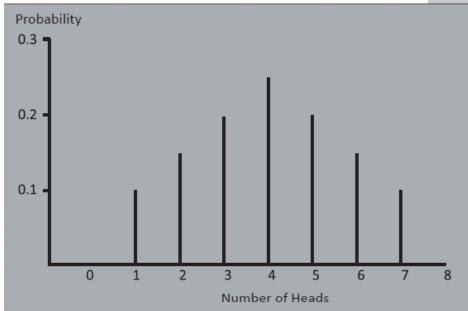
Answer:
$$N = 6$$
, $n = 3$, $p = q = 0.5$

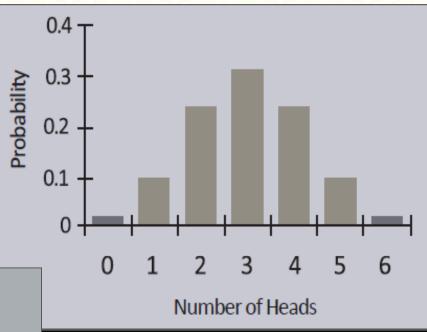
$$P(3) = \frac{6!}{3!(6-3)!}0.5^{3}1 - 0.5^{6-3}$$
$$= \frac{6 \times 5 \times 4 \times 3 \times 2}{(3 \times 2)(3 \times 2)}(0.125)(0.125) = 0.3125$$

Binomial distributions

$$p = 0.5$$

or





Properties of Binomial Distribution

Mean np

Variance npq

Standard deviation (npq)^{1/2}

Binomial Distribution: Fluctuations

Suppose the following binomial distribution;

- the probability of success: p
- the probability of failure: 1-p = q

the mean
$$\bar{n} = pN$$

N: the number of elements per system

 Δn : average fluctuation of n about its mean value, $\overline{\mathbf{n}}$

$$\overline{\Delta n} = \overline{(n - \overline{n})} = \overline{n} - \overline{n} = 0$$

-positive fluctuations cancel the negative one

the standard deviation

$$(s \tan dard \ deviation)^2 = \sigma^2 = (n - \overline{n})^2$$

$$(s \tan dard \ deviation) = \sigma = \left[\overline{(n-\overline{n})^2} \right]^{\frac{1}{2}}$$

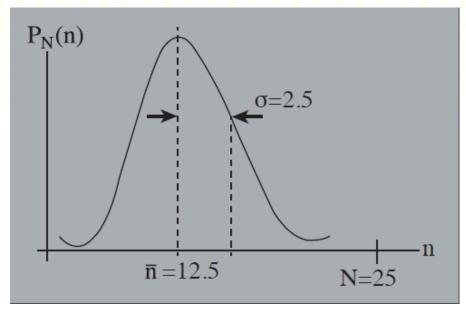
$$\sigma^2 = \overline{(n-\overline{n})^2} = \sum_n P_n (n-\overline{n})^2$$

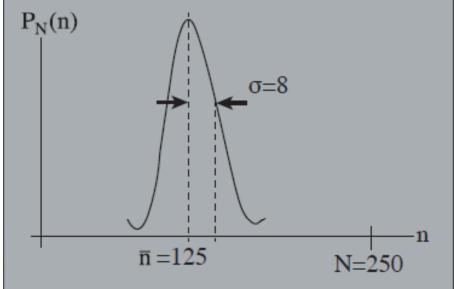
$$= \sum_{n=0}^{N} \left(\frac{N!}{n!(N-n)!} p^n q^{N-n} \right) (n-\overline{n})^2$$

solving----
$$\sigma^2 = Npq$$
 or $\sigma = \sqrt{Npq}$

relative fluctuations

$$\frac{\sigma}{n} = \frac{\sqrt{Npq}}{Np} = \sqrt{\frac{q}{NP}} \propto \frac{1}{\sqrt{N}}$$





Example 9: system of 100 COINS

-system of 100 flipped coins: what are; average number of H (head), the standard deviation, the relative fluctuation?

Ans:

$$\overline{n} = pN = (1/2)(100) = 50$$

$$\sigma = (\text{Npq})^{1/2} = ((100)(.5)(.5))^{1/2} = 5$$

$$\sigma/\overline{n} = 5/50 = 10 \%$$

- now N = 10,000 flipped coins

$$\overline{n} = pN = (1/2)(10\ 000) = 5\ 000$$

$$\sigma = (Npq)^{1/2} = ((10\ 000)(.5)(.5))^{1/2} = 50$$

$$\sigma/\bar{n} = 50/5\ 000 = 1\%$$

note:

A binomial probability distribution must meet each of the following:

- 1. There are a fixed number of trials
 - 2. The trials must be independent
- Each trial must have outcomes classified into two categories
 - 4. The probabilities remain constant for each trial

Gaussian Distribution

Gaussian Distribution

The Gaussian distribution is useful where binomial formula is not

The probability $P_N(n) \cong P(n)$

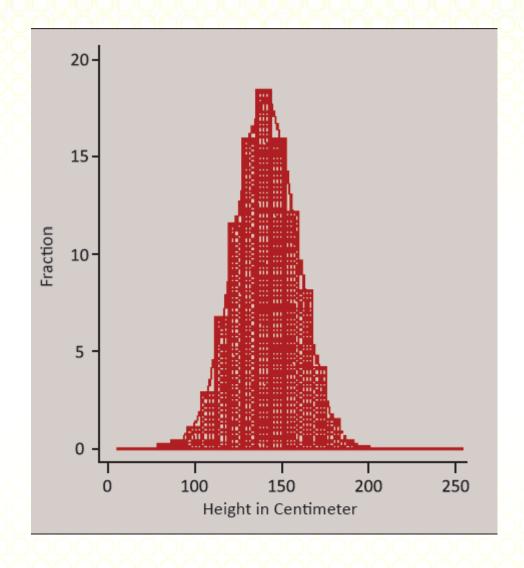
P(n) – a continuous function of n

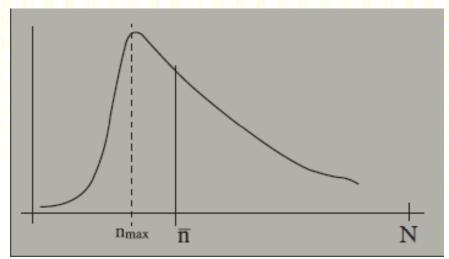
Criteria for increase accuracy;

- i) choose as smooth a function as possible
- ii) choose reference point, as close to the value of n to satisfy (i)—expand the logarithm of P(n)

to satisfy(ii) – choose reference as n_{max}

interested in values of P(n) for n near n_{max}





using Taylor series expansion

$$\ln P(n) = \ln P(\overline{n}) + \frac{\partial}{\partial n} \ln P(n) \Big|_{n=\overline{n}} (n-\overline{n}) + \frac{1}{2} \frac{\partial^2}{\partial n^2} \ln P(n) \Big|_{n=\overline{n}} (n-\overline{n})^2 + \dots$$

but
$$\frac{\partial}{\partial n} \ln P(n) \Big|_{n=\overline{n}} = 0$$
 max. point

2nd derivative using
$$\frac{\partial P(n)}{\partial n} = \frac{\Delta P(n)}{\Delta n} = \frac{P(n+1) - P(n)}{(n+1) - n} = \dots$$

$$\frac{\partial^2}{\partial n^2} \ln P(n) \Big|_{n=\overline{n}} = -\frac{1}{Npq} = -\frac{1}{\sigma^2}$$

therefore
$$\ln P(n) = \ln P(\overline{n}) - \frac{1}{2\sigma^2}(n - \overline{n})^2$$

or

$$P(n) = P(\overline{n})e^{-(\frac{(n-\overline{n})^2}{2\sigma^2}}$$

to calculate P(n)

-the sum of the probabilities of all possible values of n must be equal to 1

$$\sum_{n} P(n) = 1$$

$$\sum_{n} P(n) = 1$$

$$= \sum_{n} P(n) \Delta n \approx \int_{n=-\infty}^{\infty} P(n) dn$$

$$=P(\overline{n})\int_{n=-\infty}^{\infty}e^{-\left[\left(n-\overline{n}\right)^{2}/2\sigma^{2}\right]}dn=P(\overline{n})(\sqrt{2\pi\sigma}$$

$$=\frac{1}{\sqrt{2\pi\sigma}}e^{-\left[(n-\overline{n})^2/2\sigma^2\right]}$$

because

$$P(\overline{n}) = \frac{1}{\sqrt{2\pi\sigma}}$$

Gaussian Distribution

$$P(n) = \frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(n-\overline{n})^2}{2 \sigma^2}}$$

Properties of Gaussian distribution

$$X = (n - \overline{n})$$

$$\overline{x} = \int_{-\infty}^{\infty} xP(x) dx = 0$$

$$\int_{-\sigma}^{\sigma} P(x) dx = 0.683$$

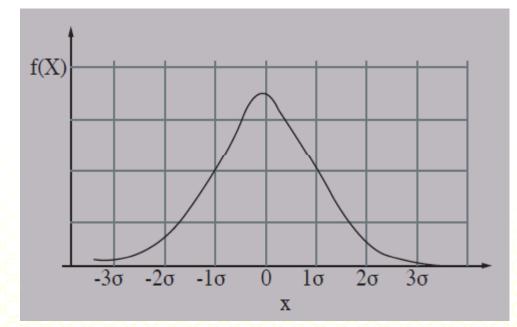
$$\int_{-2\sigma}^{2\sigma} P(x) dx = 0.954$$

$$\int_{-3\sigma}^{3\sigma} P(x) dx = 0.997$$

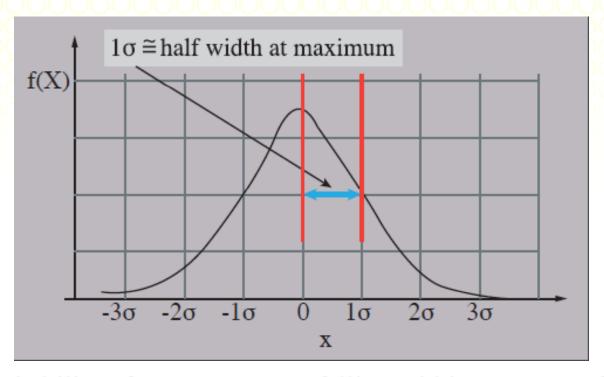
$$\frac{\partial P(x)}{\partial x} = 0 \quad \text{at} \quad x = 0$$

$$\frac{\partial^{2} P(x)}{\partial x^{2}} = 0 \quad \text{at} \quad x = \sigma$$

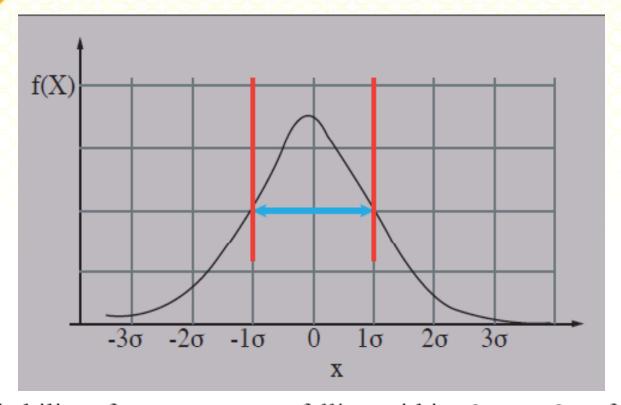
$$\int_{-\infty}^{\infty} x^2 P(x) dx = \sigma^2$$



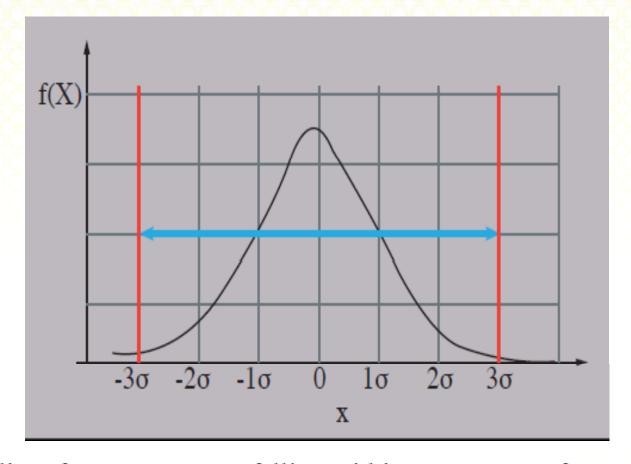
(or $n = \overline{n}$)



Probability of a measurement falling within - σ to + σ of the mean is 0.683



Probability of a measurement falling within -2 σ to +2 σ of the mean is 0.954



Probability of a measurement falling within -3 σ to +3 σ of the mean is 0.997

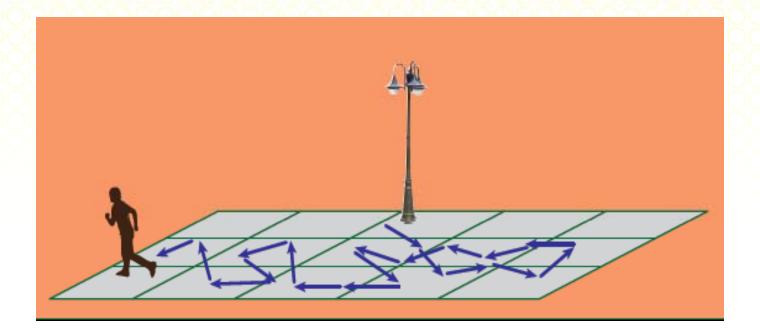
Random Walk

Random Walk

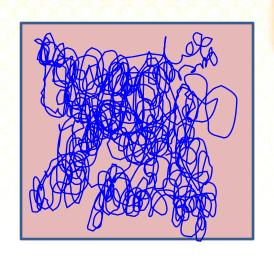
A random process consisting of a sequence of discrete steps of fixed length

The random walk is central to statistical physics.

- -predicting how fast one gas will diffuse into another,
- -how fast heat will spread in a solid,
- -how big fluctuations in pressure will be in a small container,
- -and etc.....



Problem: to find the probability of landing at a given spot after a given number of steps, or to find how far away the girl is on average from where she started.



...after many many steps

The simplest random walk is

a path constructed according

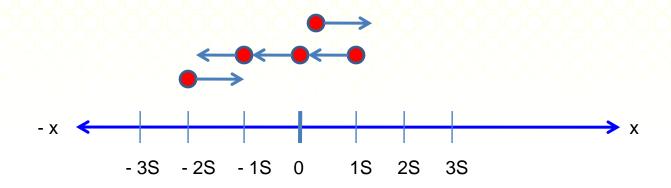
to the following rules:

- There is a starting point.
- The distance from one point in the path to the next is a constant.
- The direction from one point in the path to the next is chosen at random, and no direction is more probable than another.

UTM UNIVERSITY TECHOLOGY MALAYSIA

OPENCOURSEWARE

Consider each step is of length s_0 , It can be either forward (right) or backward (left).

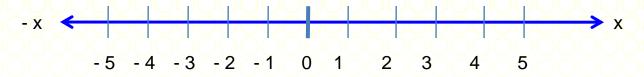


Probability of going forward (right) is p. Probability of going backward (left) is q = 1 - p

After *N* steps, if *n* are forward (right), the distance traveled is,

$$S = [n - (N - n)]s_0 = (2n - N) s_0$$

The progression of the walk and it's different outcomes are nicely organized in Pascal's triangle.



Initial: 1

After 1 step: 1q 1p

After 2 steps: 1q² 2pq 1p²

After 3 steps: 1q³ 3pq² 3p²q 1p³

After 4 steps: 1q⁴ 4pq³ 6p²q² 4p³q 1p⁴

This is known as a binomial distribution.

Define the probability function $f_N(n)$

-- the probability that in a walk of N steps, point n.

For the nonzero probabilities.

For a walk of no steps, $f_0(0) = 1$.

For a walk of 1 step, $f_1(-1) = \frac{1}{2}$, $f_1(1) = \frac{1}{2}$.

For a walk of 2 steps, $f_2(-2) = \frac{1}{4}$, $f_2(0) = 2 \times \frac{1}{4} = \frac{1}{2}$, $f_2(2) = \frac{1}{4}$.

.....
$$f_3(-3) = 1/8$$
, $f_3(-1) = 3/8$, $f_3(1) = 3/8$, $f_3(3) = 1/8$.

.....
$$f_4(4) = 1/16$$
, $f_4(2) = \frac{1}{4}$; $f_4(0) = \frac{3}{8}$,

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
$f_0(n)$						1					
$f_1(n)$					1/2		1/2				
$f_2(n)$				1/4		1/2		1/4			
$f_3(n)$			1/8		3/8		3/8		1/8		
$f_4(n)$		1/16		1/4		3/8		1/4		1/16	
$f_5(n)$	1/32		5/32		⁵ /16		⁵ /16		5/32		1/32

Factor by $(1/2)^N$

	n	-5	-4	-3	-2	-1	0	1	2	3	4	5
	$f_0(n)$						1					
	$2f_1(n)$					1		1				
	$2^2f_1(n)$				1		2		1			
	$2^3f_3(n)$			1		3		3		1		
4	24f ₄ (n)		1		4		6		4		1	
	25f5(n)	1		5		10		10		5		1

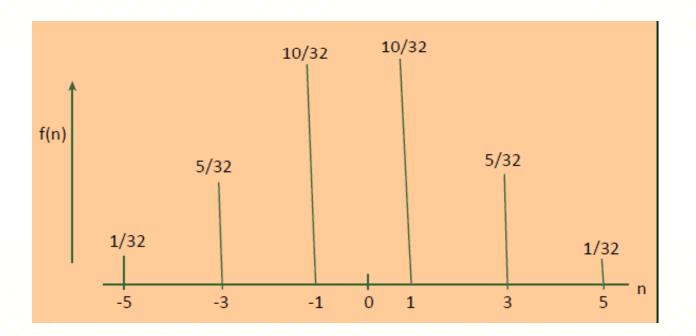
This is *Pascal's Triangle*—every entry is the sum of the two diagonally above

These numbers are in fact the coefficients that appear in the binomial expansion of $(\mathbf{p} + \mathbf{q})^N$

Picturing the Probability Distribution

Visualizing this probability distribution →

For 5 steps, it looks like:



UTM UNIVERSITI TECHOLOGI MALAYSIA

OPENCOURSEWARE

-a walk of 100 steps $\rightarrow n$ steps forward and 100 – n steps backward

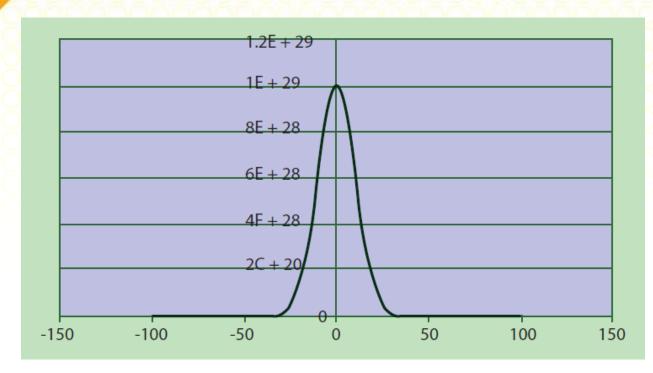
-the final landing place is n - (100 - n) = 2n - 100 paces in the forward direction.

Note that this is an even number, and goes from -100 to +100.

The total number of 100-step walks having just *n* forward steps is

$$(100)!/n!(100-n)!$$

The probability of landing at 2n - 100 after a random 100-step walk is proportional to the number of such walks that terminate there



The probability of this occurring is,

$$P(n) = \frac{N!}{n!(N-n)!} p^{n} q^{N-n}$$

The average distance covered after N steps is,

$$\overline{S} = (2\overline{n} - N)s_0 = (2pN - N)s_0$$

$$\overline{S} = N(2p-1)s_0$$
 and For $p = \frac{1}{2}$, $\overline{S} = 0$

note:
$$\overline{n} = pN$$

Standard deviation

$$\sigma^{2} = \overline{(S - \overline{S})^{2}} = \overline{[(2n - N)s_{0} - (2\overline{n} - N)s_{0}]^{2}}$$

$$\sigma^{2} = 4 s_{0}^{2} \overline{(n - \overline{n})^{2}} = 4 s_{0}^{2} Npq$$

$$\sigma^{2} = N 4 pqs_{0}^{2} \qquad \sigma = 2 s_{0} \sqrt{Npq}$$

$$\frac{\sigma}{\overline{S}} = \frac{2 s_0 \sqrt{Npq}}{N (2 p - 1) s_0} = \frac{2 \sqrt{pq}}{(2 p - 1)} \frac{1}{\sqrt{N}}$$

$$\frac{\sigma}{\overline{S}} \propto \frac{1}{\sqrt{N}}$$

AT
LAST!!

THE END....

REFERENCES:

- 1. REAF,F: "Fundamentals Of Statistical And Thermal Physics", McGraw-Hill
- 2. KITTEL & KROMER: "Thermal Physics", W.H. Freeman & Company

