

SCJ2013 Data Structure & Algorithms

Introduction to Data Structures & Algorithm

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

ocw.utm.my

Inspiring Creative and Innovative Minds

Objectives:

By the end of the class, students are expected to understand the following:

- problem solving introduction
- algorithm concept
- data structure concept

ocw.utm.my

Software Eng. & Problem Solving

- Software engineering
 - Provides techniques to facilitate the development of computer program
- Problem solving
 - Taking the statement of a problem and develop a computer program to solve problems.
 - The entire process requires to pass many phases, from understanding the problem, design solution and implement the solution.

Problem Solving

- A solution to a problem is computer program written in programming language which consist of modules.
- Type of Modules:
 - A single, stand-alone function
 - A method of a class
 - A class
 - Several functions or classes working closely together
 - Other blocks of code

Problem Solving

A good solution consists of :

- Modules that
 - organize data collection to facilitate operations
 - must store, move, and alter data
 - use algorithms to communicate with one another

Modularity

- Advantage of module:
 - Constructing programs small/large modules
 - Debugging programs task of debugging large programis reduced to small modular program.
 - Reading programs- easier to understand compared to large program
 - Modifying programs reduce large modification by concentrating on modules
 - Eliminating redundant code by calling the modules will avoid the same code to be written multiple times

Modularity Example

- Module implements algorithms
 - Algorithm: a step-by-step recipe for performing a task within a finite period of time
 - Algorithms often operate on a collection of data, which is stored in a structured way in the computer memory (Data Structure)
 - Algorithms: Problem solving using logic

- Well-defined instructions in algorithm includes:
 - 1. when given an initial state, (INPUT)
 - 2. proceed through a well-defined series of successive states, (PROCESS)
 - eventually terminating in an end-state (OUTPUT)

- 3 types of algorithm basic control structure

- Sequential
- Selection
- Repeatition (Looping)

• Basic algorithm characteristics

- Finite solution
- Clear instructions
- Has input to start the execution
- Has output as the result of the execution
- Operate effectively
- Algorithm creation techniques
 - Flowchart, pseudo code, language etc
- Factors for measuring good algorithm
 - Running time
 - Total memory usage

Algorithm & Data Structure

– Data Structure

- A way of storing and organizing data in a computer so that it can be used efficiently
- Choosing the right data structure will allow the most efficient algorithm to be used
- A well-designed data structure :
 - allows a variety of critical operations to be performed
 - anable to use few resources, both execution time and memory space, as possible

Data Structure

- Operations to the Data Structure
 - Traversing- access and process every data in data structure at least once
 - Searching search for a location of data
 - Insertion insert item in the list of data
 - Deletion delete item from a set of data
 - Sorting sort data in certain order
 - Merging merge multiple group of data

Data Types

- 2 data types
 - 1. Basic data types and
 - 2. structured data types
- Basic Data Types (C++) store only a single data
 - Integral
 - Boolean bool
 - Enumeration enum
 - Character char
 - Integer short, int, long
 - Floating point float, double

Data Types

- Structured Data Types
 - Array can contain multiple data with the same types
 - Struct can contain multiple data with different type

```
typedef struct {
    int age;
    char *name;
    enum {male, female} gender;
} Person;
```


Data Types

- Linked Data Structure
 - Linear Data Structure with restriction
 - Queue & Stack
 - Linear Data Structure with no restriction
 - Unsorted linked list
 - Sorted linked list
 - Non-linear Data Structure
 - Binary Tree
 - Graph

Linear Data Structure with restriction

- Queue
 - First-In-First-Out (FIFO) data structure
 - the first element added to the queue will be the first one to be removed (post office, bank etc)

Queue Application

Linear Data Structure with restriction

- Stack
 - Based on the principle of Last In First Out (LIFO)
 - Stacks are used extensively at every level of a modern computer system (compiler etc.)

Stack Application

Linear Data Structure with no restriction

- Linked list consists of:
 - a sequence of nodes,
 - data fields
 - one or two links or references pointing to the next and/or previous nodes

Linear Data Structure with no restriction

- Sorted linked list
 - Data stored in ascending or descending order with no duplicates
 - Insertion at front, middle or rear of the list
 - Deletion will not affect the ascending / descending order of the list
- Unsorted linked list
 - A linked list with no ordering

Non-linear Data Structure

- Tree
 - A data structure based on a tree structure
 - A tree structure is a way of representing the hierarchical nature of a structure in a graphical form
 - a binary tree is a tree data structure in which each node has at most two children
 - Used for searching big amount of data

Graph

 A graph consists of a set of vertices, and a set of edges, such that each edge is a connection between a pair of vertices.

• Some applications require visiting every vertex in the graph exactly once.

- The application may require that vertices be visited in some special order based on graph topology.
- Examples:
 - Artificial Intelligence Search (Breadth-first search, depth first search)
 - Shortest paths problems
 - Web sites containing a link to and from other websites.
 - Graph that represent courses and the pre-requisites.

Graph Example

Undirected graph

Network

- Network is a directed graph.
- Can be used to represent a route.
- Example :
 - A route for an airline.
 - A route for delivery vehicles.

Network Example

 Weighted network that represents a route for a delivery truck. The route shows all cities in Johor for the truck to deliver items and the time taken for a journey from one city to another.

Conclusion

In this class you have learned about:

- Problem solving is the entire process of taking the statement of a problem and develop a computer program to solve problems.
- Algorithm is step-by-step recipe for performing a task operate on a collection of data
- Data structure is a way of storing and organizing data in a computer, it allows efficient algorithm to be used
- The knowledge given is to ensure that you are able to provide good solution to problem solving

References

- Frank M. Carano, Janet J Prichard. "Data Abstraction and problem solving with C++" Walls and Mirrors. 5th edition (2007). Addision Wesley.
- Nor Bahiah et al. "Struktur data & algoritma menggunakan C++". Penerbit UTM. 2005.