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Digital Filter Design

• Filtering is a process of changing signal’s spectral content. The 

change is usually to attenuate a range of frequencies in the signal 

while allowing the other frequencies to pass through. 

• Below are how z-transform and DTFT are used to design the filter

Filter Z-transform DTFT

IIR 

(bilinear 

transformation)

• To convert an analog filter to 

the digital filter

• To obtain difference equation

• To analyze the 

spectral 

response

FIR

(windowing)

• Not used. Difference

equation can be obtained in 

time-domain by convolution

• To analyze the 

spectral 

response



Digital Filter Design (cont.)

• Shown in the previous table are only for bilinear transformation and 

windowing techniques. There are many other techniques in 

designing both IIR and FIR filters. Different technique will use the z-

transform and DTFT (or DFT) differently.



Ideal Filter

Lowpass filter:

|� � |�� = �1								
��			� ≤ �� 										0								
��			�� < � < �	
Highpass filter: |� � |�� = �0								
��			� < �� 										1								
��			�� ≤ � ≤ �	

= 1 − |� � |��		

• Cut-off frequency (��) is the only parameter considered.

��

��



Ideal Filter (cont.)

Bandpass filter:

|� � |�� = � 0								
��			� < ���											1								
��			��� ≤ � ≤ ���0								
��			��� < � ≤ �		
																										= |� � |��(���) − |� � |��(���)		

Bandstop filter:

|� � |�� = � 1								
��			� ≤ ���											0								
��			��� < � < ���1								
��			��� ≤ � ≤ �		
																				= 1 − |� � |��(���) + |� � |��(���)		

���						���

���						���



Non-ideal Filter

• Filter characteristic below must be considered:

�� - Cutoff frequency 

� - Passband edge frequency

�! - Stopband edge frequency

" - Passband ripple

"! - Stopband ripple

# - Filter order

∆� - Transition bandwidth 



Non-ideal Filter (cont.)



IIR Filter Design

• There are two common technique used in designing the IIR filter

– Impulse Invariance

– Bilinear Transformation

• Basically, both techniques are implemented by converting system 

function of continuous-time filter (�(%)) to the discrete-time 

system function (�(&)). In other words, they map all poles in s-

plane onto z-plane.



Bilinear Transformation

• In Bilinear transformation technique, relationship between the s-plane 

and z-plane is shown below where ' = �() and *! is the time sampling.

• Then, the relationship between the continuous-time frequency Ω
and the discrete-time frequency � is

% = ' 1 − &,�1 + &,�

Ω = '. tan �2 							and					� = 2345,� Ω'



Filter Design Procedure

1. Determine filter characteristic            

(" , "!, � , �!, ��, #):

• When designing filter, not all 

filter characteristics must be 

determine. Below are 3 ways of 

specifying the filter 

characteristics.

I. Specify " , "!, � and �!
II. Specify ��, #
III. Specify ��, �! and "! or ��, � and " 

2. Find system function of the 

continuous-time filter, � % : 

For Butterworth filter, need to 

find Ω� and #.

3. Transform the continuous-time 

filter, �(%) to the discrete-

time filter, �(&)
4. Obtain the time-domain 

representation of the discrete-

time filter for implementation: 

Either as an impulse response 

or as a difference equation.



Butterworth filter

• In this class, the filter design will be based only on Butterworth 

filter, which is one of the well known continuous-time filter. 

Another example of well known continuous-time filter is Chebyshev

filter. 

• The magnitude squared spectrum of continuous Butterworth filter 

is define as:

|� 6Ω |� =
1

1 +
Ω
Ω�

�7



Butterworth filter (cont.)

• From there, it follows that

• Based on the previous equation, it shows that Butterworth filter is 

an IIR filter as it contains poles at % ≠ 0. From the equation, it also 

shows that Butterworth filter contains only poles and no zeros on 

the s-plane. 

� % � −% =
1

1 +
−s�Ω��

7



Butterworth filter (cont.)

• The poles of the Butterworth filter can be determined as follow:

• Total number of the poles will be similar to N (filter order) where all 

poles are positions at : < 0 on the s-plane. This is to ensure the 

causality and stability of the filter. 

• The following figures are examples of the poles position on the s-

plane with  Ω� = 1.

%; = Ω�<= �;>7>� ? �7⁄ , 	B = 0, 1,… ,# − 1



Butterworth filter (cont.)



Butterworth filter (cont.)

• Then, the system function of 

the Butterworth filter is

• To simplify the system function, 

always set Ω� = 1. Thus, the 

system function becomes

� % = Ω�7∏ % − %;7,�;EF � % = 1∏ % − %;7,�;EF

%; = <= �;>7>� ? �7⁄ , 	B = 0, 1,… ,# − 1



Butterworth filter (cont.)

• Below is table showing the system function for several filter order 

when Ω� = 1.

N �(%)
1

1% + 1
2

1%� + 1.4142% + 1
3

1

% + 1 %� + % + 1

4
1

%� + 0.7654% + 1 %� + 1.8478% + 1



Example 1

• Design a digital lowpass filter based on 2nd order Butterworth filter 

where cutoff frequency of the filter is �� = 0.5�	�4L

Solution:

Step 1: Specify filter characteristics. Use given �� = 0.5� and # = 2. 

Step 2: Find system function of the continuous filter by setting Ω� = 1, system function for 2nd order Butterworth filter is

� % = 1%� + 1.4142% + 1



Example 1 (cont.)

Step 3: Transform �(%) to �(&)

% = '
1 − &,�

1 + &,�

Need to find ' value. It can be computed based on given ��
and Ω� = 1 using equation below

Ω� = '. tan ��2
' = 1tan(0.25�) = 1



Example 1 (cont.)

Then, the discrete-time system function is

� & =
1

1 − &,�

1 + &,�

�

+ 1.4142
1 − &,�

1 + &,�
+ 1

										=
1 + &,� �

1 − &,� � + 1.4142 1 − &,� 1 + &,� + 1 + &,� �

										=
1 + &,� �

3.4142 + 0.5858&,�

										= 0.2929
1 + 2&,� + &,�

1 + 0.1864&,�



Example 1 (cont.)

Step 4: Obtain time-domain representation. Here we use difference 

equation.

O 5 = 0.2929 P 5 + 2P 5 − 1 + P[5 − 2] − 0.1864O 5 − 2

• In order to see the shape of the filter, obtain and plot |� � |. For 

this example, the plot is shown below. Also shown is the magnitude 

dB plot and poles and zero plot for the filter.



Example 1 (cont.)
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Example 1 (cont.)



Example 2

• Design an IIR lowpass filter based on Butterworth filter with the 

following filter characteristics.

• "! = " = 0.1

• � = 0.2�

• �! = 0.4�

Solution:

Step 1: Specify filter characteristics. As given in the question the filter 

characteristics are shown in the following figure.



Example 2 (cont.)

Step 2: Find system function of the continuous filter 

To obtain the system function, set Ω� = 1 and find N 



Example 2 (cont.)

• From the filter characteristics, |� 6Ω |� at ΩS and ΩT can be 

identified, which are 0.9� and 0.1� respectively. Based on this 

information, N can be computed as follows where generally, the 

magnitude squared spectrum of Butterworth filter is set as Ω� = 1

|� 6Ω |� =
1

1 + Ω�7

• In order to compute #, evaluate the magnitude squared spectrum 

at ΩS and ΩT. Based on bilinear transformation;

Ω = '. tan
�

2



Example 2 (cont.)

• ΩS = '. tan
�U

�
= '. tan

F.�?

�
= 0.3249'

• ΩT = '. tan
�)

�
= '. tan

F.V?

�
= 0.7265'

• Evaluating magnitude squared spectrum at ΩS and ΩT gets to

1

1 + 0.3249c �7
= 0.9�																																	(1)

1

1 + 0.7265c �7
= 0.1�																																	(2)



Example 2 (cont.)

• By manipulating and rearranging the two equations, it can be 

shown that

# =
1

2

X�Y
|� ΩT |

�. 1 − |� ΩS |�

|� ΩS |�. 1 − |� ΩT |
�

X�Y
ΩS
ΩT

					= 3.7569

					≈ 4

• Because # must be an integer number, value from the computation 

is round toward infinity to ensure the filter characteristics specified 

in step 1 is hold.



Example 2 (cont.)

Finally, with Ω� = 1 and # = 4, the system function of the 

continuous-time filter is

• � % =
�

!�>F.[\]V!>� !�>�.^V[^!>�

Step 3: Transform �(%) to �(&)

% = '
1 − &,�

1 + &,�

Need to find ' value. It can be computed based on equation 

(1) with # = 4. The results is ' = 2.5676



Example 2 (cont.)

• Based on the ' value, the discrete-time system function is

• � & =
�

��
�_`_�

�a`_�

�

>F.[\]V�
�_`_�

�a`_�
>� ��

�_`_�

�a`_�

�

>�.^V[^�
�_`_�

�a`_�
>�

• 										=
�>b_�

c

d.]][^,��.�^]�b_�>].\�[eb_� ��.ee[,��.�^]�b_�>�.^V^�b_�

Step 4: Obtain time-domain representation. Do it yourself as an exercise.

• Magnitude spectrum, magnitude dB spectrum and pole-zero plot of 

the filter are shown below where the cutoff frequency is �� = 0.24. 

�� can be computed using equation

• � = 2345,�
f

�



Example 2 (cont.)

�(�	�4L)

�(�	�4L)



Example 2 (cont.)



Pair of Poles Solution

• As in the Example 2, there are two pairs of poles (# = 4). Thus, 

denumerator of �(&) is presented by multiplication of two sets of 

the 2nd order expressions.

• For each pair of poles, the transformation using the bilinear 

transformation from �(%) to �(&) where Ω� = 1 can be written as

g� = '� + 4' + 1

g� = −2'� + 2

ge = '� − 4' + 1

� % =
1

%� + 4% + 1
						⟹ 				� & =

1 + &,� �

g� + g�&
,� + ge&

,�



Pair of Poles Solution (cont.)

• When # is odd, there will be one extra poles after pairing all 

conjugation poles. The transformation of the extra poles from �(%)

to �(&) where Ω� = 1 can be written as

L� = 1 + '

L� = 1 − '

� % =
1

% + 1
						⟹ 				� & =

1 + &,�

L� + L�&
,�



Example 3

• Convert �(%) to �(&) for the 4th order Butterworth filter shown 

below using bilinear transformation. Assume ' = 1

� % =
1

%� + 0.7654% + 1 %� + 1.8478% + 1

Solution:

• From bilinear transformation, �(&) can written as

� & =
1 + &,� V

g� + g�&
,� + ge&

,� L� + L�&
,� + Le&

,�



Example 3 (cont.)

• where

• g� = 1� + 0.7654 + 1 = 2.7654

• g� = −2+ 2 = 0

• ge = 1� − 0.7654 + 1 = 1.2346

• L� = 1� + 1.8478 + 1 = 3.8478

• L� = −2+ 2 = 0

• Le = 1� − 1.8478 + 1 = 0.1522

Thus,

� & =
1 + &,� V

2.7654 + 1.2346&,� 3.8478 + 0.1522&,�



Example 4

• Design an IIR Butterworth filter with �� = 0.5�, �! = 0.9� and 

"! = 0.01

Solution:

Step 1: Specify filter characteristics. Use filter characteristics as given 

in the question.

Step 2: Find system function of the continuous filter by computing #

from the magnitude squared equation of the Butterworth 

filter where

1

1 + ΩT
�7

= 0.01�



Example 4 (cont.)

• ΩT = '. tan
�)

�
= '. tan

F.d?

�
= 6.3138'

• ' value can be computed from equation below with Ω� = 1

• Ω� = '. tan
��

�

• From there, ' = 1. Thus ΩT = 6.3138 and the magnitude squared 

equation becomes

1

1 + 6.3138�7
= 0.01

�



Example 4 (cont.)

• Rearranging the magnitude squared equation leads to the 

formulation of # as below

• # =	
�

�
.
ijk

�

l)
�,�

mnofp
=	

�

�

V

F.^
= 2.5 ≈ 3

• Finally, with Ω� = 1 and # = 3, the system function of the 

continuous-time filter is

Η s =
1

s + 1 s� + s + 1



Example 4 (cont.)

Step 3: Transform �(%) to �(&)

• % = '
�,b_�

�>b_�

• Thus,

• Η z = 	
�>b_� �>b_�

�

s�>s�b
_� t�>t�b

_�>tub
_�

where

4� = 1 + ' = 2

4� = 1− ' = 0



Example 4 (cont.)

g� = '� + 4' + 1 = 3.4142

g� = −2'� + 2 = 0

ge = '� − 4' + 1 = 0.5858

Finally,

Η z = 	
1 + &,� e

2 3.4142 + 0.5858&,�

										= 	0.1464
1 + &,� e

1 + 0.1716&,�



Example 4 (cont.)

Step 4: Obtain time-domain representation. 

�(&) = 0.1416
1 + 3&,� + 3&,� + &,e

1 + 0.1716&,�

O 5 = 0.1416 P 5 + 3P 5 − 1 + 3P 5 − 2 + P 5 − 3

																			−0.1716O 5 − 2



Example 4 (cont.)

�(�	�4L)

�(�	�4L)



Example 4 (cont.)



Example 5

• Design an IIR Butterworth filter that will attenuate frequencies 

component at � = 0.5� and � = 0.9� in signal P[5] shown below. 

Also shown are the signal’s magnitude and phase spectrum.

5



Example 5 (cont.)

�

�



Example 5: 2nd order BF

Solution:

• Below are the solution by applying 2nd order and 9th order IIR 

Butterworth filter to signal P[5] with �' = 0.3�

• 2nd order Butterworth filter:

�(�	�4L)



Example 5: 2nd order BF

�(�	�4L)



Example 5: 2nd order BF

• Output

�(�	�4L)

�(�	�4L)



Example 5: 2nd order BF

O[5]

5



Example 5: 9th order BF

�(�	�4L)

�(�	�4L)

9th order Butterworth filter



Example 5: 9th order BF



Example 5: 9th order BF

• Output

�(�	�4L)

�(�	�4L)



Example 5: 9th order BF

O[5]

5
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