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Introduction

• In digital system, all values must be in discrete. 

• However, discrete signal in time-domain that undergoes DTFT will 

produce a continuous frequency value in frequency-domain. 

• Thus, it is impossible to compute Fourier Transform in a digital 

system.

Time	Domain
n − discrete 						

					��									Frequency	Domainf − continuous



Introduction (cont.)

• To overcome the problem, Discrete Fourier Transform (DFT) is 

introduced where both time and frequency are in discrete form.

Time	Domain
n − discrete 							

					���													Frequency	Domaink − discrete



Frequency Domain Sampling

• In time-domain, sampling is based on �� (sampling time), where 

� = ���. This means that every period of ��, one sample is taken.

• In frequency-domain, similar process is used to sample the 

frequency-domain. As shown in figure below, one sample is taken at 

each ��
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Frequency Domain Sampling (cont.)

• ��	 → equally spaced frequency within the range of 0 ≤ � ≤ 2$

• Where % is the number of samples taken from the frequency 

domain.

• If in time-domain, � = ��� is use to sample the time, in frequency-

domain, � = &�� is use to sample the frequency where �	&	& is an 

integer number.

�� = 2$%



Frequency Domain Sampling (cont.)

• In time-domain, (� must be chosen as (� ≥ 2(* to avoid aliasing.

• In frequency-domain, aliasing can be avoided when % is chosen as 

% ≥ length of signal in the time-domain

• In computing DFT, the frequency range will always start at � = 0

and end at � = 2$ − ��



DFT Transform Pair

+[k] = . / � 0123456*
7

6817
→ 9:;<=;>

/[�] = 1%. + & 023456*
*1@

58A
→ B�C0;D0

Note that the inverse transform of DFT is using summation operation 

while inverse transform of DTFT uses integration operation. 



Example 1

• ℎ � = 1	1	1	1
Solution:

• Because the length of the signal is 4, we choose % = 4 if other 

value of % is not stated. Thus, DFT is computed for 0 ≤ & ≤ 3 as 

below where & = 3 is at � = 2$ − �� = 2$ − 43 =
H4
3

• I & = ∑ ℎ � 01KLMNOPH68A 	= ∑ ℎ � 01KMNOLH68A

• I 0 = ∑ ℎ � 0AH68A = 1 + 1 + 1 + 1 = 4



Example 1 (cont.)

• I 1 = ∑ ℎ � 01KMOLH68A = 1 + 01KML + 0124 + 01KRL 4

• = 1 − S − 1 + S = 0

• I 2 = ∑ ℎ � 01246H
68A = 1 + 0124 + 01234 + 012H4 = 0

• I 3 = ∑ ℎ � 0
1
KRMO

LH
68A = 1 + 0

1
KRM

L + 012H4 + 0
1
KT

L
4
= 0

# I V = [4	0	0	0]



Example 1 (cont.)

• Based on the example, 4 samples are enough to represent the 

frequency response that ranges from � = 0 to � = 2$
• In the example, the samples are taken at each �� = 34

W =
4
3 rad.

• Thus, the samples are actually taken at � = 0, 43 , $,
H4
3



Example 1 (cont.)

• In this example, % = 4 is similar to the signal length. Thus, it is 

enough to represent the frequency response of the signal and the 

original signal can be accurately reconstructed from the I[&] where

• ℎ[�] = @
*∑ I & 0KLMNOY*1@58A

• ℎ[�] = @
W∑ I & 0KMNOLH58A

• ℎ 0 = @
W∑ I &H58A = 1

• ℎ 1 = @
W∑ I & 0KMNLH58A = 1

• ℎ 2 =
@

W
∑ I & 0245H
58A = 1

• ℎ 3 =
@

W
∑ I & 0

KRMN

LH
58A = 1

# ℎ � = [1	1	1	1]



Example 2

• If ℎ � = / � = 1	1 , find Z[�] using frequency domain 

computation

Case 1: choose [ = \

• I & = + & =
∑ ℎ[�]012456@68A

• I 0 = ∑ ℎ �@68A = 2
• I 1 = ∑ ℎ[�]01246@

68A

• = 1 − 1 = 0

• Thus,

• I & = + & = 2		0

# ] & = I & ∙ + & = 4		0



Example 2 (cont.)

• Use IDFT to get back Z[�]

• Z[�] = @
*∑ ] & 0KLMNOY*1@58A

• 										= @
3∑ ] & 02456@58A

• Z 0 = @
3 4 + 0 = 2

• Z 1 =
@

3
∑ ] & 0245@
58A = 2

# Z � = 2		2

• 																↑

• The result is wrong because the it is not similar with the time-

domain convolution where Z � = 1		2		1 									

• 																																																																		↑

• The incorrect answer is due to the insufficient %(sample) used in 

the DFT computation. As the output Z[�] has a length equals to 3, 

% for DFT should be at least equals to 3.



Example 2 (cont.)

Case 2: choose [ = `

• I & = + & = ∑ ℎ[�]01KLMNOR@68A

• I 0 = ∑ ℎ �@68A = 2

• I 1 = ∑ ℎ � 0
1
KLMO

R@
68A = 1 − 0.5 − S0.866 = 0.5 − S0.866 =

012eA
f

• I 2 = ∑ ℎ � 0
1
KPMO

R@
68A = 1 − 0.5 + S0.866 = 0.5 + S0.866 = 02eA

f

• I & = [2		012eA
f
		02eA

f
]

# ] & = + & I & = I & I & = [4		012@3A
f
		02@3A

f
]



Example 2 (cont.)

• Then, the inverse transform is

• Z � = @
H∑ ] & 02LR456358A

• Z 0 = @
H∑ ] &358A = @

H 4 + 012 @3A
f + 02 @3Af

• 									= @
H 4 + 2 cos 120g = 1

• Z 1 =
@

H
∑ ] & 0

2
L

R
453

58A

• 									=
@

H
4 + 02 1@3A

fh@3Af + 02 @3A
fh3WAf

• 									=
@

H
4 + 1 + 1 = 2



Example 2 (cont.)

• Z 2 =
@

H
∑ ] & 0

2
P

R
453

58A

• 									=
@

H
4 + 02 1@3A

fh3WAf + 02 @3A
fhWiAf

• 									=
@

H
4 + 2 cos 120g = 1

# Z � = 1		2		1

• This result is similar when computed based on the time-domain 

convolution



Example 2 (cont.)

• Find ][&] if / � = [1	1] and ℎ � = [1	1	1]
Solution:

• In order to compute ] & , DFT for both /[�] and ℎ � must be first 

computed where both DFT computation must use similar %. This is to 

ensure that multiplication of + & and I & is made on each similar �
value.

• Let see what happen if different % value is chosen, for example 

% = 2	9:;	/[�] and % = 3	9:;	ℎ[�].

– For % = 2, �� = $, thus & = [0, 1] is referring to � = [0, $]

– For % = 3, �� =
34

H
, thus & = [0, 1, 2] is referring to � =

0,
34

H
,
W4

H



Example 2 (cont.)

• For different %, it can be seen that even at similar & values, the �
value is different. Thus, multiplication of + & and I & will be 

wrong.

• To get a correct answer, % must be set at least with its minimum 

value which is 4. Thus, both DFT of /[�] and ℎ[�]must be 

computed based on 4-points DFT. Below are the results

• + & = [2, 		1 − S, 				0, 			1 + S]
• I & = [3, 		 −S, 	1, 	S]

• ] & = [6,−1 − S, 0, −1 + S]

# Z � = [1	2	2	1]



Relationship of DFT to DTFS

• It is known that, frequency in DTFS is also discrete such in the DFT. 

Does DFT and DTFT similar?

• Basically, difference of the two is DTFS is for periodic signal while 

DFT is for aperiodic signal as it is derived from DTFT. However, let’s 

look at their formulation as below. % in DTFS refers to the number 

of samples in one time-period while % in DFT refers to the number 

of samples in the frequency domain.

j�(k					 ⟹ 				 =5 =
1
% . /mnopgqpr[�]ℯ123456/*
68 *

j(�					 ⟹ 				+[k] = . /umnopgqpr � 0123456/*
7

6817



Relationship of DFT to DTFS (cont.)

• If the length of the aperiodic signal is equals to the number of 

sample in one period of the periodic signal as shown in the next 

two figure and frequency in DFT is sampled at 10 point, the DTFS 

and the DFT  can be computed as below:

• j�(k					 ⟹				 =5 = @
@A∑ /[�]ℯ123456/@Av68A

• j(�					 ⟹ 				+[k] = ∑ / � 0123456/@Av68A

• From there, it can be seen that computation of DTFS and DFT 

identical except that DTFS is divided by 10. This phenomena cause 

the operation of DFT to be influence by the characteristic of the 

periodic signal, which is called ‘circular effect’.



Relationship of DFT to DTFS (cont.)

Aperiodic signal with length 10 samples

Periodic signal with 10 samples in each period

0 10
0

5

10

n

x

0 10 20-10-20
0

5

10

n

x



DFT Properties

• Properties of the DFT is based on the ‘circular effect’

Properties Time Domain Frequency Domain

Notation / � , Z � + & , ] &
Periodicity / � = /[� + %] + & = + & + %
Linearity =/ � + wZ � =+ & + w] &
Circular time shifting / � − �q * ℯ123456x *⁄ + &
Circular frequency shifting ℯ2345x6 *⁄ / � + & − &q *

Circular convolution / � 	%	Z[�] + & ] &
Multiplication / � Z[�] @

*+ & 	%	][&]
Parseval’s theorem ∑ / � Z∗[�]*1@68A @

*∑ + & ]∗ &*1@58A



Example 4

• Let’s get back to Example 2 where ℎ � = / � = [1	1] and % = 2. 

• Applying DFT to both signal results I & = + & = [2	2]

• Thus, ] & = + & I & = [4	4]

• Then Z[�] is obtain by taking the inverse DFT of ][&] where 

Z � = [2	2].

• The results is different compare to the normal time-domain 

convolution operation where Z � = [1	2	1].

• This is because DFT multiplication in frequency domain does not 

results normal convolution in time-domain. Instead, it results 

circular convolution as shown in the next figure where the aperiodic 

signals of /[�] and ℎ[�] act as periodic signal.



Example 4 (cont.)

ℎ[�]
⟹ 1 1 1 1 1 1 1 1 1

/[�] ⟹ 1 1 1 1 1 1 1 1 1

• The term circular comes in because operation to periodic signal 

within % samples window can be observed as circulating the 

values inside the window

• Example 5 shows an example.



Example 5

• Do circular convolution to /@[�] = [1	2	3] and /3 � = [4	5	6]. Let 

the output as Z[�]

• Thus, Z � = [31	31	28]

� = 0, /@ −& ⇒ [1 3 2] ⇒ Z 0 = 31

/3 & ⇒ [4 5 6]

� = 1, /@ 1 − & ⇒ [2 1 3] ⇒ Z 0 = 31

/3 & ⇒ [4 5 6]

� = 2, /@ 2 − & ⇒ [3 2 1] ⇒ Z 0 = 28

/3 & ⇒ [4 5 6]



Example 5 (cont.)

• Repeat the circular convolution with /@[�] = [1	2	3	0	0] and 

/3 � = [4	5	6	0	0]

• The result is Z � = [4	 13  28  27  18], which is different compare to 

the previous answer but similar with normal convolution output.

• In Example 1, it was shown that insufficient % samples gives different 

output compare to the normal convolution process. From Example 5, 

it is known that the different is because of the circular effect. 

• To avoid circular effect, 

% ≥ |0�}�ℎ	/ � + |0�}�ℎ	ℎ � − 2



Symmetry Properties of DFT

• In general, the symmetry property can be written as

• Thus, to obtain I[&], only values at � ≤ $ need to be computed.

I & ∗ = I[% − &]



Example 6

• ℎ � = 1	2	2	2	1
																↑

• I & = ∑ ℎ � 0
1
KLMNO

~W
68A

• & values that are at � ≤ $ is & = 0,1	&	2

• I 0 = ∑ ℎ �W
68A = 8

• I 1 = ∑ ℎ � 0
1
KLMO

~W
68A = −1.309 − S0.951

• I 2 = ∑ ℎ � 0
1
KPMO

~W
68A = −0.191 − S0.588



Example 6 (cont.)

• From there

• I 3 = I 2 ∗ = −0.191 + S0.588

• I 4 = I 1 ∗ = −1.309 + S0.951

• When magnitude and phase spectrum are computed, the results 

are

• I & = [8				1.618				0.618				0.618				1.618]

• ∠I � = [0			 − 2.5133			 − 1.8849				1.8849				2.5133]
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