SKAA 1213 - Engineering Mechanics

TOPIC 9
 Moment of Inertia

Lecturers:
Rosli Anang
Dr. Mohd Yunus Ishak
Dr. Tan Cher Siang

Moment of Inertia for Areas

Definition : $\int x^{2} d A$

Moment of inertia of a differential area $d A$ about x and y axes are:
$d l_{x}=y^{2} d A \quad d l_{y}=x^{2} d A$
For the entire area, the moment of inertia;

$$
I_{x}=\int_{A} y^{2} d A \quad I_{y}=\int_{x} x^{2} d A
$$

Polar Moment of Area

The polar moment of inertia of $d A$ (about z-axis),

$$
d J_{o}=r^{2} d A
$$

For the entire area;

$$
J_{O}=\int_{A} r^{2} d A=I_{x}+I_{y}
$$

Radius of Gyration of an Area

$$
K_{x}=\sqrt{\frac{I_{x}}{A}}
$$

$$
K_{z}=\sqrt{\frac{I_{z}}{A}}
$$

Example 1

Determine the moment of inertia of the rectangular section with respect to;
(a) centroidal axis x,
(b) axis x_{b}
(c) z axis passing through C , and h (d) the radius of gyration x '.

$$
\begin{aligned}
& \text { (a) } \quad \text { Answer] } \\
& \text { (a) } I_{x^{\prime}}=b h^{3} / 12 \\
& \text { (b) } I_{x b}=\underline{b h^{3} / 3} \\
& \text { (c) } J_{c}=\frac{1}{12} b h\left(h^{2}+b^{2}\right)
\end{aligned}
$$

(d) $K_{x}=\sqrt{h^{2} / 12}$

Example 2

Compute the moment of inertia of the shaded area about the x axis.
[Answer : $I_{x}=106 \times 10^{6} \mathrm{~mm}^{4}$]

Parallel-Axis Theorem for an Area

Definition \& Usage : Provided that the moment of inertia about an axis which pass through the centroid is known, the moment of inertia about a corresponding parallel axis can be determined easily by using parallel axis theorem.

Prove

Consider a differential area $d A$ about the x axis; $\mathrm{d} I_{x}=\left(\mathrm{y}^{\prime}+\mathrm{d}_{\mathrm{y}}\right)^{2} \mathrm{dA}$

$$
\begin{aligned}
I_{x} & =\int_{A}\left(y^{\prime}+d_{y}\right)^{2} d A \\
& =\int_{A} y^{\prime 2} d A+2 d_{y} \int_{A} y^{\prime} d A+d_{y}{ }^{2} \int_{A} d A
\end{aligned}
$$

The $1^{\text {st }}$ intergal is the MOI about the centroid.
The $2^{\text {nd }}$ integral is zero since the moment of area about the centroidal axis is 0 .

The $3^{\text {rd }}$ integral is the total area.
Conclusion: $I_{x}=I_{x^{\prime}}+A d_{y}{ }^{2}$

$$
I_{y}=I_{y^{\prime}}+A d_{x}^{2}
$$

$$
J_{0}=I_{C}+A d^{2}
$$

Moments of Inertia for Composite

Areas

Provided the moment of inertia of each parts is known, then the moment of inertia of the composite area equals the algebraic summation of the moments of inertia of each individual part.

Example 3

Determine the moment of inertia of the T section about the centroidal x^{\prime} and y^{\prime} axes.
[Answer: , $x=0, y=26.1 \mathrm{~cm}, I_{x}=87474 \mathrm{~cm}^{4}, I_{y}=147833 \mathrm{~cm}^{4}$]

Example 4

Compute the moment of initial of a composite area about the x^{\prime} centroidal axis. [Answer: $\left.I_{x}=14905 \mathrm{~cm}^{4}\right]$

