SKAA 1213 - Engineering Mechanics

TOPIC 8
Centre of Gravity
\&
Centroid

Lecturers:
Rosli Anang
Dr. Mohd Yunus Ishak
Dr. Tan Cher Siang

Centre of Gravity \& Centre of Mass

Centre of Gravity: a point where the resultant weight of the system of particles act.

$\bar{x}, \bar{y}, \bar{z} \quad$ Coordinates of the centre of gravity G of the system of particles
$\tilde{x}^{\prime} \tilde{y}, \tilde{z} \quad$ Coordinates of each particle in the system of particles
$\Sigma \mathrm{W}$ The resultant sum of the weights of all the particles in the system

Formulas:

Centre of Gravity
$\bar{x}=\frac{\sum \tilde{x} W}{\sum W} \quad \bar{y}=\frac{\sum \tilde{y} W}{\sum W} \quad \bar{z}=\frac{\sum \tilde{z} W}{\sum W}$

Centre of Mass

$$
\bar{x}=\frac{\sum \tilde{\mathrm{x} m}}{\sum \mathrm{~m}} \quad \bar{y}=\frac{\sum \tilde{y} \mathrm{~m}}{\sum \mathrm{~m}} \quad \bar{z}=\frac{\sum \tilde{\mathrm{z}} \mathrm{~m}}{\sum \mathrm{~m}}
$$

Rigid Body - Centre of Gravity and Centre of Mass \& Centroid

- composed of an infinite number of particles.

Centre of Gravity

Apply the integration instead of summation as similar to the system of particles.

For an arbitrary particle at ($\tilde{x}, \tilde{y}, \tilde{z}$)

$$
\bar{x}=\frac{\int \tilde{x} d W}{\int W} \quad \bar{y}=\frac{\int \tilde{y} d W}{\int W} \quad \bar{z}=\frac{\int \tilde{z} d W}{\int W}
$$

Replacing $d W$ with $\gamma d V$

$$
\bar{x}=\int_{\int_{v} \tilde{\int}_{v} \tilde{y} d V}^{\bar{d} V}=\int_{\int_{v} \tilde{v} \gamma \mathrm{dV}} \quad \bar{z}=\int_{\int_{v} \tilde{v} \gamma \mathrm{z} \mathrm{dV}}
$$

where $\gamma=$ specific weight

Centre of Mass

Replace γ with ρ in the above equation, since $\gamma=\rho \mathrm{g}$.

Example 1

Locate the centre of mass of the composite assembly shown. The cylinder has a density of $\rho_{\mathrm{C}}=8000 \mathrm{~kg} / \mathrm{m}^{3}$, and the hemisphere $\rho_{\mathrm{H}}=5000 \mathrm{~kg} / \mathrm{m}^{3}$.

$$
\text { [Answer : } \bar{x}=\bar{y}=0, \bar{z}=0.0766 \mathrm{~m} \text {] }
$$

Centroid

Definition: a point which defines the geometric centre of an object.
Equations: Similar to those of the centre of gravity/mass if the material is homogeneous where the specific weight / density is constant.

Composite Bodies

- A composite body is made up of a series of connected simpler shaped bodies
- Each of the composite part is treated as a particle
- Useful when weight and the location of the centre of gravity of each of these parts is given to avoid long process of integration.

Formula :

$$
x=\frac{\sum \tilde{X} W}{\sum W} \quad y=\frac{\sum \tilde{y} W}{\sum W} \quad z=\frac{\sum \tilde{Z} W}{\sum W}
$$

$\bar{x}, \bar{y}, \bar{z} \quad$ Coordinates of the centre of gravity G of the system of the composite body

$$
\tilde{x}, \tilde{y}, \tilde{z}
$$

Coordinates of each particle in the system of each of the composite part of the body
The resultant sum of the weights of all the composite parts in the body/the total
$\Sigma \mathrm{W} \quad$ weight of the body

Example 2

Locate the centroid of the rod bent into a parabolic arc as shown.

[Answer : $y=0.574 m, x=0.410 m$]

Example 3

Determine the location of the centroid of rod.

[Answer : $\bar{X}=9.32 \mathrm{~cm}, \bar{y}=18.18 \mathrm{~cm}$]

Example 4

Determine the distance \tilde{y}, the distance from the centroid to the x axis. [Answer: $\tilde{y}=\frac{h}{3}$]

Example 5

Determine the location of the centroid of the T section beam. Dimensions in cm .
[Answer : $\bar{y}=27.58 \mathrm{~cm}, \bar{x}=0 \mathrm{~cm}$]

Example 6

Compute the centroid of the plate as shown below with all the dimensions in m .
[Answer: $\bar{Y}=1.76 \mathrm{~m}, \bar{X}=1.32 \mathrm{~m}$]

