

SKAA 1213 - Engineering Mechanics

Moment and Couple

Lecturers: Rosli Anang Dr. Mohd Yunus Ishak Dr. Tan Cher Siang

Innovative.Entrepreneurial.Global

ocw.utm.my

Moment of a Force

- Moment of a force about a point/axis the tendency of the force to cause the body to rotate about the point/axis.
- Moment is a vector quantity

Mo

Moment of a Force

Moment axis

F

1. Scalar Formulation of Moment

 $\mathbf{M}_{o} = \mathbf{F}\mathbf{d}$ Where *d* is the perpendicular distance from the axis of point O to the action of the force F).

Direction of force : specified by using the *right hand rule.*

Moment Arm

Determine the moment of the 70N force about point A. [Answer: (a) M_A 2800Nmm \mathcal{O} (b) M_A =2704.6Nmm \mathcal{O}]

Example 2

Determine the moment of the 70N and 60N forces about point A. [Answer : $M_A = 3611.4 \text{ Nm } \mathcal{O}$]

Example 3 Determine the moment of each the force about point O.

 $[Answer: M_{O1} = 200kNm U, M_{O2} = 70kNm U, M_{O3} = 50kNm U, M_{O4} = 70kNm U, M_{O5} = 125kNm U]$

Determine the moments of the 40kN force about points A, B, C and D.

 $[Answer: M_A = 0 M_B = 48kNm \mathcal{U}M_C = 20kNm \mathcal{U}M_D = 20kNm \mathcal{U}]$

Resultant Moment of Coplanar Forces

 determined by total up the moments of all the forces algebraically.

 $\mathcal{O} + \mathcal{M}_{RO} = \Sigma F d$

 F_2 d_2 F_1 f_3 f_3 f_4 f_5 f_5 f_6 f_7 f_8 f_8

The counterclockwise curl written along the equation indicates that, the moment of any force will be positive if it is directed along the +z axis.

Example 5

Determine the moment of the three forces about point O. [Answer : $OM_O = -120kNm$]

Example 6

Determine the moments of the three forces about point B and C. [Answer : $OM_B = -85kNm$, $OM_C = 125Nm$]

Cross Product

cross product of two vectors **A** and is written as **C** = **A x B**

Magnitude of $C = AB \sin \theta$

The direction of vector **C** is perpendicular to the plane **A** & **B** such that **C** is specified by the *right-hand rule*.

Cross Product - Laws of Operations

Commutative law: $A \times B \neq B \times A$ $A \times B = -B \times A$

Multiplication by a scalar: $a (A \times B) = (aA) \times B = A \times (aB) = (A \times B)a$

Distributive law:

 $A \times (B + D) = (A \times B) + (A \times D)$

ocw.utm.my

Cross Product of the Cartesian unit vectors

In a similar manner,

This diagram is helpful for obtaining the result of cross products of unit vectors

Tips : Apply right hand rule

Cross product of two vectors **A** and **B**.

Determinant form: $\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$

 M_{\circ}

Moment of a Force

2. Vector Formulation of Moment

ocw.utm.m

 The moment of F about point O discussed earlier, can be expressed using the vector cross-product;

 $\mathbf{M}_{\mathrm{O}} = \mathbf{r} \mathbf{x} \mathbf{F}$

Where r represent the position vector drawn from O to any point lying on the line of action of F.

Magnitude:

$$M_o = rF \sin \theta = F(r \sin \theta) = Fd$$

Moment axis

Direction: Apply right-hand rule at the intersection point of the tails of extended *r* and *F*

Note that the moment axis is **perpendicular** to the plane containing r and F

r is treated as a sliding vector

Example 7 A force F=90N directed from C to D. Determine the magnitude of the moment created about the support at point A, and their coordinate direction angles. [Answer : $M_A = 253.4Nm \alpha = 126.9^{\circ} \beta = 81^{\circ} \gamma = 141.6^{\circ}$]

Example

Three forces acting on the rod. Determine the resultant moment about O and the coordinate direction angles. Given $F_1 = 20i + 80k$, $F_2 = 40i + 30j - 25k$ and $F_3 = -35i + 50j - 15k$.

 $[Answer: M_{RO} = 410Nm \ \alpha = 120.8^{\circ} \beta = 117^{\circ} \gamma = 43^{\circ}]$

Principle of Moments (Varignon's theorem)

The moment of a force about a point is equal to the summation of the moments of the force's components about the point.

Proof:
$$\mathbf{M}_{\circ} = \mathbf{r} \mathbf{x} \mathbf{F}_{1} + \mathbf{r} \mathbf{x} \mathbf{F}_{2}$$

= $\mathbf{r} \mathbf{x} (\mathbf{F}_{1} + \mathbf{F}_{2})$
= $\mathbf{r} \mathbf{x} \mathbf{F}_{1}$

 F_{2} F_{2} F_{2} F_{2} F_{2} F_{2} F_{2} F_{2} F_{2} F_{2}

F₁

Useful to determine the moment arms of the force's components than the moment arm of the force itself.

Moment of a Force about a Specified Axis

• Can be solved by **scalar** or **vector** analysis.

In some situations we need the component of the moment along a specified axis that passes through the point. Let say component of M_0 about y axis, M_y .

1. Scalar Analysis

ocw.utm.my

a) $M_o = 20(0.5) = 10 \text{ Nm}$ (direction defined by RH Rule about the *Ob* axis)

b) $M_v = 20(0.3) = 6 \text{ Nm}$ *(direct method)*

• If the line of action of a force **F** is perpendicular to any specified axis *aa*, then;

 $M_a = Fd_a$

where d_a is the perpendicular distance from the force line of action to the axis.

- The direction is determined from the thumb of the Right Hand when the fingers are curled in accordance with the direction of rotation.
 - A force will **NOT** contribute a moment about a specified axis if the force **line of action is parallel** to the axis or its line of action **passes through** the axis.

axes.

What are the values moment about the *x*,*y*, *z*

[Answer : $M_{Ox} = 13 \text{ Nm } M_{Oy} = 59 \text{ Nm } M_{Oz} = -32 \text{ Nm}$]

Example

Find the Moment about a specified axis using Scalar notation method. [Answer : $M_{Ox} = 48Nm M_{oy} = 0Nm$, $M_{oz} = 0Nm$]

Example

Find the Moment about a specified axis using Scalar notation method. [Answer : $M_{Ox} = 0Nm$, $M_{oy} = 0Nm$, $M_{oz} = 50 Nm$]

ocw.utm.my

2. Vector Analysis

 $M_0 = r_A x F$ = (0.3i + 0.4j) X (-20k) = (-8i + 6j) Nm

The component of this moment along the y axis is then determined from the dot product Since the unit vector of this axis is $u_a=j$, then

$$M_v = \mathbf{M}_0 \cdot \mathbf{u}_a = (-8\mathbf{i} + 6\mathbf{j}) \cdot \mathbf{j} = 6 \text{ Nm}$$

Vector analysis is advantages to find moment of force about an axis when the force components or the moment arms are difficult to determine.

How to get
$$M_a$$
?
1. Find $M_o = r \times F$
2. $M_a = M_o \cos \theta = M_o \cdot u_a$
 $M_a = (r \times F) \cdot u_a = u_a \cdot (r \times F)$

In vector algebra , combination of dot and cross product yielding the scalar M_a is called the *triple scalar product*.

The triple scalar product :

$$M_{a} = (\mathbf{u}_{ax}\mathbf{i} + \mathbf{u}_{ay}\mathbf{j} + \mathbf{u}_{az}\mathbf{k}) \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix} = \begin{vmatrix} u_{ax} & u_{ay} & u_{az} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix}$$

Once M_a is determined, \mathbf{M}_a as a Cartesian vector ;

$$\mathbf{M}_{a} = M_{a}\mathbf{u}_{a} = [\mathbf{u}_{a} \cdot (\mathbf{r} \mathbf{x} \mathbf{F})]\mathbf{u}_{a}$$

To find the **resultant** of a series of forces about the axis aa', the moment components of each force are added together algebraically, since the component lies along the same axis.

$$M_a = \sum [\mathbf{u}_a \cdot (\mathbf{r} \mathbf{x} \mathbf{F})] = \mathbf{u}_a \cdot \sum (\mathbf{r} \mathbf{x} \mathbf{F})$$

Example The force F= -35i + 50j - 15k acts at C. Determine the moment of this force about *x* and *a* axes.

ocw.utm.m

 $[Answer: M_x = -210Nm M_a = -161Nm]$

Couples and Couple Moments

- Definition : two parallel forces that have the same magnitude but opposite direction, and separated by a perpendicular distance, *d*.
- The moment produced is called **couple moment**.
- $\Sigma F = 0$, the only effect is tendency of rotation.

Moment of a Couple

Determination of moments of couple forces about any point :

about A: M = r X F

about O:
$$M = r_B X (F) + r_A X (-F)$$

This indicates that a couple moment is a free vector. It can act at any point since M only depends upon the position vector r, not r_A and r_B .

-F

Scalar Formulation: *M* =*Fd*

Vector Formulation: M = r x F

Properties of Moment of a Couple

1. The couple moment is unaffected by the pivot location

*Couples at the same position for example below.

2. A couple can be shifted and still have the same moment about a given point.

Couple at different position & moments calculated at the same point. $M_{\Delta}=30(2)=60$ Nm

• Equivalent Couples

Two couples which produce the **same moment** lie either in the **same plane** or in planes **parallel** to each other. The direction of the couple moments is the same and is perpendicular to the parallel planes.

Resultant Couple Moment

Since couple moments are free vectors they can be applied at any point on a body and added vertically.

ocw.utm.my

Two set of couple forces

Two couple moments

Moved to any arbitrary _{M₂} point and added to obtain resultant couple moment

 $M_{R} = M_{1} + M_{2}$

Example

Replace the forces acting on the structure by an equivalent resultant force and couple moment

at A. [Answer: $OM_{RA} = -46.6Nm(O)$]

Example

Determine the moment of the couple on the member shown. [Answer : OM = -221.5Nm]

Equivalent System

Replacing system of forces and couple moments acting on a body by a **single force and couple** acting on a specified point O that produce the **same external effects** of translation and rotation.

Case 2: Point O Is Not On the Line of Action

*Note: Since couple is a free vector, it may be applied at any point

Resultants of a Force System

$$\mathbf{M}_{\mathsf{R}^{\mathsf{o}}} = \sum \mathbf{M}_{\mathsf{c}} + \sum \mathbf{M}_{\mathsf{o}}$$
$$\mathbf{F}_{\mathsf{R}} = \sum \mathbf{F}$$

NOTE:

- Both the magnitude & direction of F_R are independent of the location of O, however,
- M_{RO} depends on the location of O since the moment M₁ & M₂ are determined by using the position vectors r₁ & r₂.
- M_{RO} is a free vector and can act at any point on the body.

Determine the magnitude, direction and location of a resultant force which is equivalent to the given system of forces measured horizontally from A. [Answer : $F_R = 272N(\varkappa) \theta = 68.4^\circ d = 0.18m$]

Example

Determine the magnitude and direction of a resultant force equivalent force system and locate its point of application.

[Answer: $F_R = -1190N(4)$, y = 2.84m x = 1.24m]

ocw.utm.my

Simplification to a Single Force System

Consider a **special case** for which the system of forces and couple moments reduces at point O of the resultant force F_R and couple M_R which are **perpendicular** to each other.

If the system of forces is either concurrent, coplanar, or parallel, it can be reduced (as in the above case), to a single resultant force \mathbf{F}_{R} .

This is because in each of these cases F_R and M_R will always be perpendicular to each other when the force system is simplified at **any** point.

1.Concurrent Force System

2.Coplanar Force System

3.Parallel Force System

Determine the magnitude and location of the equivalent resultant force acting on the beam.

[Answer: $F_R = -1190N(4)$, $\overline{x} = 3m$]

Determine the magnitude and location of the equivalent resultant force acting on the beam.

[Answer: $F_R = 140KN$, $\overline{x} = 1.86m$]

Reduction of a simple Distributed Loading

Uniform pressure along one axis on a flat rectangular surface. The load intensity is of the load represented by the arrows form a system of parallel forces, infinite in numbers, each acting on a separate differential area.

Load function, p = p(x)[pressure uniform in y axis] Multiply p=p(x) with the width a, we obtain; w=p(x) a = w x

This loading function is a measure of load distribution along the line y=0 which is the plane of symmetry of the loading. Note: it is load per unit length.

In a system of coplanar parallel forces, the load intensity can be represented by **w** = w(x)

This system of forces can be simplified to a single force \mathbf{F}_{R} and its location x can be specified.

Magnitude of Resultant Force

For an elemental length dx as shown in the diagram, the force acting is;

dF = w(x) dx = dA [shaded area]

For entire length;

$$+\downarrow F_{\mathrm{R}} = \sum F: F_{\mathrm{R}} = \int w(x) \, dx = \int dA = A$$

Hence, the magnitude of the resultant force is equal to the total area A under the loading diagram w = w(x).

Location of Resultant Force

ocw.utm.my

 $M_{\rm RO} = \Sigma M_{\rm O}$

Equating the moment of the F_R and the force distribution about O.

$$♡ + M_{RO} = SM_O: \overline{x}F_R = \int x_{\mu}w(x) dx$$
Solving for \overline{x} ;

$$O = \frac{dA}{dx} = \frac{dA}{dx}$$

dF produces a moment of **x** dF = x w(x) dx about O.

$$\overline{\mathbf{x}} = \frac{\int_{L} x w(x) dx}{\int_{L} w(x) dx} = \frac{\int_{A} x dA}{\int_{A} dA}$$

Location of Resultant Force

This eqn represents the \overline{x} coordinate for the geometric center (centroid) of the area under the distributed loading diagram w(x).

dF produces a moment of **x** dF = x w(x) dx about O.

The resultant force has a line of action which passes through the centroid C fo the area defined by the distributed loading diagram w(x).

