

Basic Genetics (SQBS 2753)

Extensions of Mendelism

Azman Abd Samad

Innovative.Entrepreneurial.Global

ocw.utm.my

Beyond Mendel...

- Since Mendel's work was rediscovered in the early 1900's:
 - Researchers have studied the many ways genes influence an individual's phenotype
 - These investigations are called neo-Mendelian genetics (neo from Greek for "new")
 - This chapter examines types of inheritance observed by researchers that did not conform to the expected Mendelian ratios

Extensions of Mendelian Genetics

- How alleles affect phenotype
 - Not always simple dominant/recessive issue
- Gene interaction
 - Phenotype controlled by more than one gene
- Sex-linked genes (X-linkage in X/Y organisms)
- Phenotype can depend on more than genotype
 - Environmental effects

Extended Mendelian Inheritance Patterns

• Incomplete dominance

- Heterozygosity at a locus produces a third 3 phenotype intermediate to the two homozygous phenotypes
- Co-dominance
 - Heterozygosity at a locus produces a single unique phenotype different from either homozygous condition
- Overdominance
 - Heterozygosity at a locus creates a phenotype that is more beneficial or more deterimental than homozygosity of either locus with any allele

Extended Mendelian Inheritance Patterns

• Lethality

– Homozygosity of an allele kills the cell or organism

- Penetrance
 - A measure of how variation in expression of a given allele occurs
 - incomplete penetrance describes the lack of effect a deleterious allele might have in an individual carrying it

Extended Mendelian Inheritance Patterns

• Sex-linked

- inheritance of genes on that are unique to a sex chromosomes
- pseudoautosomal genes genes on both sex chromosomes appear to be on autosomes
- Sex-influenced
 - An allele is expressed differently in each sex. Behaving dominantly in one sex and recessively in the other
- Sex-limited
 - An allele is only expressed in one or the other sex

Innovative.Entrepreneurial.Global

ocw.utm.my

Complete Dominance/Recessiveness

- recessive allele does not affect the phenotype of the heterozygote
- two possible explanations
 - 50% of the normal protein is enough to accomplish the protein's cellular function
 - The normal gene is "up-regulated" to compensate for the lack of function of the defective allele

Simple Mendelian Inheritance

Normal/dominant alelle: P (purple) Recessive/defective alelle: p (white)

Genotype	PP	Рр	рр
Amount of functional protein	100%	50%	0%
Phenotype	Purple	Purple	White

Incomplete Dominance

- Heterozygote exhibits a phenotype <u>intermediate</u> to the homozygote
- Also called *intermediate dominance* or dosage effect
- Example: Flower colour of snapdragon
- Phenotypic ratio: 1 (red) :2 (pink):1 (white) and NOT the 3:1 ratio

Phenotype	Genotype	Amount of gene product
Red	RR	2X
Pink	Rr	Х
White	rr	0

Gene Dosage – A form of intermediate dominance

- Alleles of white
 - X-linked eye color gene in Drosophila
 - W red (wildtype gene)
 - w white
 - we eosin
- we allele was expressed with different intensity in the two sexes
 - Homozygous females \rightarrow eosin
 - Males \rightarrow light-eosin

Gene Dosage

- Morgan & Bridges hypothesized that difference in intensity was due to the difference in number of X chromosomes
 - Female has two copies of the "eosin color producer" allele
 - Eyes will contain more color
 - Males have only one copy of the allele
 - Eyes will be paler
- This is an example of gene dosage effect

Codominance

- two alleles at a locus produce different and detectable gene products in heterozygote
- No dominance or recessiveness
- No "blended" phenotype (not incomplete dominance)
- Example: MN blood group in humans
 - Red blood cell glycoprotein surface antigen has two forms (M and N)
 - An individual may exhibit either or both

Codominance

For example:

- One serum (anti-M) recognises only the M antigen; anti-N recognises only N antigen
- Antigen M reacts with anti-M causes
 AGGLUTINATION

Genotype	Phenotype
LMLM	MM
L ^M L ^N	MN
$L^{N}L^{N}$	NN

Multiple Alleles

- The term multiple alleles is used to describe situations when three or more different alleles of a gene exist
- Examples:
 - ABO blood
 - Coat color in many species
 - Eye color in *Drosophila*

Multiple Alleles

- <u>ABO blood</u> phenotype is determined by multiple alleles
- ABO type result of antigen on surface of RBCs
 - Antigen A, which is controlled by allele I^A
 - Antigen B, which is controlled by allele I^B
 - Antigen O, which is controlled by allele *i*

Blood Type	0	А	В	AB
Genotype	ii	l ^A l ^A or l ^A i	I ^B I ^B or I ^B i	I ^A I ^B
Surface Antigen	Ο	А	В	A and B

Allelic Series

- Dominance hierarchy will exist for multiple alleles
 - -allelic series for ABO type
 - $|^{A} = |^{B} > i$
 - -allelic series for rabbit coat color alleles :
 - $C > c^{ch} > c^h > c$

Allelic Series

- <u>coat color</u> in rabbits
 - C (full coat color)
 - *c*^{*ch*} (chinchilla pattern of coat color)
 - Partial defect in pigmentation
 - *c*^{*h*} (himalayan pattern of coat color)
 - Pigmentation in only certain parts of the body
 - c (albino)
 - Lack of pigmentation

Allelic Series

- Four alleles, c gene in rabbits ---> six heterozygotes;
- C⁺ : completely dominant
- C^{ch} (chinchila allele): partly dominant over the himalayan and albino alleles
- Dominance relationship:

 $C^+ > C^{ch} > C^h > C$

- C gene formation of black pigment in fur;
- Albino allele nonfunctional allele = null =amorphic (completely recessive)
- Partly functional allele = hypomorphic

Coat Colour in Rabbit

Rabbit	Genotype	Phenotype
Albino	CC	White hairs over the entire body
Himalayan	C ^h C ^h	Black hairs on the extremities; white hairs everywhere else
Chinchilla	CchCch	White hair with black tips on the body
Wild-type	C+C+	Coloured hairs over the entire body

Lethal Alleles

- Essential genes are those that are absolutely required for survival
 - The absence of their protein product leads to a lethal phenotype
 - It is estimated that about 1/3 of all genes are essential for survival
- Nonessential genes are those not absolutely required for survival
- A lethal allele is one that has the potential to cause the death of an organism
 - These alleles are typically the result of mutations in essential genes
 - usually recessive, but can be dominant

Lethal Alleles

- Example: agouti (coat color) in mice
 - agouti x agouti → all agouti
 yellow x yellow → 2/3 yellow, 1/3
 agouti
 - agouti x yellow \rightarrow ½ yellow, ½ agouti
 - Explanation: mutant yellow dominant over wt agouti and homozygous agouti lethal. Mutant allele always on (gain of function), deletion actually affects neighboring essential gene

Innovative.Entrepreneurial.Global

ocw.utm.my

Lethal Dominant Mutations

- Both homozygous and heterozygous states are lethal
- Generally very rare
- Example: Huntington disease (humans)
 - Nervous and motor system degeneration
 - Commonly begins to be exhibited after age forty (but can be much earlier)
 - Children already born
- Afflicted persons are heterozygous (Hh)

Conditional Mutations

- The ch allele is a temperature-sensitive conditional mutant
 - The enzyme is only functional at low temperatures
 - Therefore, dark fur will only occur in cooler areas of the body

Overdominance

- Overdominance is the phenomenon in which a heterozygote is more vigorous than both of the corresponding homozygotes
- Example:
 - Sickle-cell heterozygotes are resistant to malaria
 - increased disease resistance in plant hybrids

Incomplete Penetrance

- In some instances, a dominant allele is not expressed in a heterozygote individual
- Example = Polydactyly
 - Autosomal dominant trait
 - Affected individuals have additional fingers and/or toes
 - A single copy of the polydactyly allele is usually sufficient to cause this condition
 - In some cases, however, individuals carry the dominant allele but do not exhibit the trait

OPENCOURSEWARE

@ 0.90

Innovative.Entrepreneurial.Global

ocw.utm.my

Incomplete Penetrance

- The term indicates that a dominant allele does not always "penetrate" into the phenotype of the individual
- The measure of penetrance is described at the population level
 - If 60% of heterozygotes carrying a dominant allele exhibit the trait allele, the trait is 60% penetrant
- Note:
 - In any particular individual, the trait is either penetrant or not

Expressivity

- Expressivity is the degree to which a trait is expressed
- In the case of **polydactyly**, the number of extra digits can vary
 - A person with several extra digits has high expressivity of this trait
 - A person with a single extra digit has low expressivity

Expressivity

- "Eyeless" mutation in Drosophila
 - Reduces eye size from a partial reduction to complete elimination (average 0.25 to 0.50)

Penetrance & Expressivity

- The molecular explanation of expressivity and incomplete penetrance may not always be understood
- In most cases, the range of phenotypes is thought to be due to influences of the
 - Environment
 - and/or
 - Other genes (genetic background)

Environmental Effects

- Temperature effects
 - Evening primrose produces red flowers at 23°C and white flowers at 18°C
 - Siamese cats and Himalayan rabbits have darker fur on cooler areas of body (tail, feet, ears)
 - Enzymes lose catalytic function at higher temperature
- Temperature sensitive mutations
 - Mutant allele only expressed (phenotype) at [generally] lower temperature
 - ts phage mutants, restrictive and permissive temperatures
- Heat-shock genes

Nutritional Effects

- Nutritional mutations
 - Prevent synthesis of nutrient molecules
 - Auxotrophs
 - Phenotype expressed or not depending upon the diet
- Phenylketonuria (PKU) recessive disorder of amino acid metabolism
 - Loss of enzyme to metabolize phenylalanine
 - Severe problems unless low Phe diet
- Galactosemia (very bad again) and lactose intolerance (unpleasant)...

Environmental Effects on the Expression of Human Genes

- Pattern baldness sex-influenced
- Both homo- and heterozygotes bald patches (male);
- Female homozygotes bald (thinning of the hair)
- Relate to testosterone

GENE INTERACTIONS

Innovative.Entrepreneurial.Global

Epistatic Gene Interactions

- Gene interactions occur when two or more different genes influence the outcome of a single trait
- Most morphological traits (height, weight, color) are affected by multiple genes
- Epistasis describes situation between various alleles of two genes
- Quantitative loci is a term to describe those loci controlling quantitatively measurable traits
- Pleiotropy describes situations where one gene affects multiple traits

Epistasis

- Epistasis
 - The effect of one gene pair (locus) masks or modifies the effect of another gene pair
- Examples
 - Recessive alleles at one locus override expression of alleles at another locus. Alleles at 1st locus are said to be epistatic to the masked hypostatic alleles at the 2nd locus
 - Allele(s) at one locus may require specific allele at another locus, these pairs are said to complement each other

Epistatic Gene Interactions

- examine cases involving 2 loci (genes) that each have 2 alleles
- Crosses performed can be illustrated in general by
 - AaBb X AaBb
 - Where A is dominant to a and B is dominant to b
- If these two genes govern two different traits
 - A 9:3:3:1 ratio is predicted among the offspring
 - simple Mendelian dihybrid inheritance pattern
- If these two genes do affect the same trait the 9:3:3:1 ratio may be altered
 - 9:3:4, or 9:7, or 9:6:1, or 8:6:2 or 12:3:1, or 13:3, or 15:1
 - epistatic ratios

OPENCOURSEWARE

A Cross Producing a 9:7 ratio

Duplicate Recessive Genes (9:7)

When identical phenotypes are produced by both homozygous recessive genotypes, the F1 ratio becomes 9:7.

The genotype *aaB-, A-bb* & *aabb* produce one phenotype.

Source Both dominant alleles, when present together, complement each other & produce a different phenotype.

[≫] For example:

Flower color of sweet peas

A- codes for color pigment B codes for color purple b codes for color white

Duplicate Recessive Genes (9:7)

F₁:

AaBb (purple)

F ₂		AB	Ab	aB	ab
	AB	AABB,	AABb,	AaBB,	AaBb,
		purple	purple	purple	purple
	Ab	AABb,	AAbb, white	AaBb,	Aabb, white
		purple		purple	
	aВ	AaBB,	AaBb,	aaBB, white	aaBb, white
		purple	purple		
	ab	AaBb,	Aabb, white	aaBb, white	aabb, white
		purple			

Epistatic Gene Interaction

- Complementary gene action
 - Enzyme C and enzyme P cooperate to make a product, therefore they complement one another

Epistatic Gene Interaction

- Epistasis describes the situation in which a gene masks the phenotypic effects of another gene
- Epistatic interactions arise because the two genes encode proteins that participate in sequence in a biochemical pathway
- If either loci is homozygous for a null mutation, none of that enzyme will be made and the pathway is blocked

A Cross Involving a Two-Gene Interaction Can Still Produce a 9:3:3:1 ratio

- Inheritance of comb morphology in chicken
 - First example of gene interaction
 - William Bateson and Reginald Punnett in 1906
 - Four different comb morphologies:
 - Rose, Pea, Walnut & Single

The crosses of Bateson and Punnett

RP	Rp	rP	rp
RRPP	RRPp	RrPP	RrPp
walnut	Walnut	Walnut	Walnut
RRPp	RRpp	RrPp	Rrpp
Walnut	Rose	Walnut	Rose
RrPP	RrPp	rrPP	rrPp
Walnut	Walnut	Pea	Pea
RrPp	Rrpp	rrPp	rrpp
Walnut	Rose	Pea	Single

The crosses of Bateson and Punnett

- F₂ generation consisted of chickens with four types of combs
 - 9 walnut : 3 rose : 3 pea : 1 single
- Bateson and Punnett reasoned that comb morphology is determined by two different genes
 - R (rose comb) is dominant to r
 - P (pea comb) is dominant to p
 - R and P are codominant (walnut comb)
 - rrpp produces single comb

Duplicate Dominant Gene (15:1)

The 9:3:3:1 ratio is modified if the dominant alleles of both loci each produce the same phenotype without cumulative effect.

✗ For example:

<u>Flower color of peas</u> aabb codes for color white any other combination produce color red

P: F₁:	AAbb (red)		X AaBb <mark>(red)</mark>	aaBB (white)	
F ₂	AB		Ab	aB	ab
	A B	AABB, red	AABb, red	AaBB, red	AaBb, red
	Ab	AABb, red	AAbb, red	AaBb, red	Aabb, red
	aB AaBB, red		AaBb, red	aaBB, red	aaBb, red
	ab	AaBb, red	Aabb, red	aaBb, red	aabb, white

Gene Interaction

- Duplicate gene action
 - Enzyme 1 and enzyme 2 are redundant
 - They both make product C, therefore they duplicate each other

Dominant Epistasis (12:3:1)

- When the dominant allele (A) produces a certain phenotype regardless of the allele condition of another locus (B), A is said to be epistatic to B.
- Solve the genotype of the individual is homozygous recessive (aa), then B or b can be expressed.
- ** A-B- & A-bb* produce the same phenotype;
- *aaB-* & *aabb* produce 2 additional phenotypes.

Dominant Epistasis (12:3:1)

✗ For example:

Coat colors of dogs

I- inhibit coat color pigment / expression

B represents black color coat

b represents **brown** color coat

P:

liBb (white)

liBb (white)

F₁:

liBb

X

F_2		IB	lb	iB	ib
	ΙB	IIBB, white	IIBb, white	liBB, white	liBb, white
	lb	IIBb, white	llbb, white	liBb, white	libb, white
	iB	liBB, white	liBb, white	iiBB, black	iiBb, black
	ib	liBb, white	libb, white	iiBb, black	iibb, brown

Recessive Epistasis (9:3:4)

- If the recessive genotype at locus A (eg: aa) suppresses the expression of alleles at B locus, locus A exhibit recessive epistasis over locus B.
- The alleles in locus B can only be expressed with the presence of dominant alleles at locus A.
- Senotypes A-B- & A-bb produce 2 additional phenotypes.
- ✗ For example:

Flower color of peas

A- codes for color pigmentB codes for color purpleb codes for color red

Recessive Epistasis (9:3:4)

P: **AAbb** (red) X aaBB (white) F_1 : AaBb (purple)

F_2		AB	Ab	aB	ab
	AB	AABB, purple	AABb, purple	AaBB, purple	AaBb, purple
	Ab	AABb, purple	AAbb, red	AaBb, purple	Aabb, red
	aB	AaBB, purple	AaBb, purple	aaBB, white	aaBb, white
	ab	AaBb, purple	Aabb, red	aaBb, white	aabb, white

Duplicate Genes with Cumulative Effect (9:6:1)

- Occur when dominant allele (homozygous or heterozygous) at either locus (but not both) produces the same phenotype.
- Genotypes A-bb & aaB- produce one unit each and therefore have the same phenotype.
- Genotype aabb produces no pigment but in genotype A-B- the effect is cumulative and 2 units of phenotypes are produced.
- ✗ For example:

Color of wheat kernels

- R-B- produce red color
- rrbb produce white color
- Any other combination produces brown color

P:RRBB (red)Xrrbb (white) F_1 :RrBb (red)

F_2		RB	Rb	rB	rb
	RB	RRBB, red	RRBb, red	RrBB, red	RrBb, red
	Rb	RRBb, red	RRbb, brown	RrBb, red	Rrbb, brown
	rB	RrBB, red	RrBb, red	rrBB, brown	rrBb, brown
	rb	RrBb, red	Rrbb, brown	rrBb, brown	rrbb, white

Innovative.Entrepreneurial.Global

Dominant and Recessive Interaction (13:3)

Solve the same of the same of

Senotype *A-B-, aaB- & aabb* produce one phenotype and genotype *A-bb* produce another in the ratio 13:3.

F ₂	AB	Ab	aB	ab
AB	AABB, white	AABb, white	AaBB, white	AaBb, white
Ab	AABb, white	AAbb, red	AaBb, white	Aabb, red
aB	AaBB, white	AaBb, white	aaBB, white	aaBb, white
ab	AaBb, white	Aabb, red	aaBb, white	aabb, white

Dominant and Recessive Interaction (13:3)

 \gg Only two F2 phenotypes result when a dominant genotype at 1 locus (*A*-) and the recessive genotype at another (*bb*) produce the same phenotypic effect.

Senotype *A-B-, aaB- & aabb* produce one phenotype and genotype *A-bb* produce another in the ratio 13:3.

Dominant and Recessive Interaction (13:3)

[≫] For example:

Flower color of peas

A-bb codes for color red

Any other combination codes for color white

P:AAbb (white)XaaBB (white) F_1 :AaBb (white)

F_2		AB	Ab	aB	ab
	AB	AABB, white	AABb, white	AaBB, white	AaBb, white
	Ab	AABb, white	AAbb, red	AaBb, white	Aabb, red
	aB	AaBB, white	AaBb, white	aaBB, white	aaBb, white
	ab	AaBb, white	Aabb, red	aaBb, white	aabb, white

Summary of Epistatic Ratios

Genotypes	A-B-	A-bb	aaB-	aabb
Classical ratio	9	3	3	1
Dominant epistasis		12	3	1
Recessive epistasis	9	3		4
Duplicate genes with cumulative effect	9		6	1
Duplicate dominant genes		15		1
Duplicate recessive genes	9		7	
Dominant and recessive interaction	13	3		

Examples of Epistatic Cases

Organism	Character		Modified			
Organishi	Character	9/16	3/16	3/16	1/16	ratio
Mouse	Coat colour	Agouti	albino	Black	Albino	9:3:4
Squash	Colour	White		Yellow	Green	12:3:1
Реа	Flower colour	Purple	Purple White			9:7
Squash	Fruit shape	Disc	Sphere		Long	9:6:1
Chicken	Colour	White		Coloured	White	13:3

References

- Snustad DP, Simmons, MJ (2010) Principles of Genetics Fifth Ed. John Wiley & Sons, Inc., USA.
- Klug WS, Cummings MR, Spencer CA, Palladino MA (2012) Concepts of Genetics. 10th Ed. Pearson, California.
- Hartwell LH, Hood L, Goldberg ML, Reynolds AE, Silver LM (2011) Genetics: From Genes to Genomes. 4th Ed. McGraw-Hill Companies, Inc., NY