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Conformal Mapping and its Applications

Outline:
• Conformality
• Bilinear transformation, Symmetry principle
• Schwarz-Christoffel transformation, Riemann map
• Boundary Value Problems, Equipotentials, Streamlines
• Electrostatics, Heat Flow, Fluid Mechanics
• Airfoil, Joukowski transformation
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Geometric Meaning of Complex Functions

• The graph of a real-valued function of a real variable can
often be displayed on a two-dimensional coordinate
diagram.

• However, for w = f (z), where z and w are complex
variables, a graphical representation of the function f
would require displaying a collection of four real numbers
in a four-dimensional coordinate diagram.

• Since this is not accessible to our geometric visualization,
some alternatives are called for.
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Geometric Meaning of Complex Functions

• A commonly used graphical representation of a
complex-valued function of a complex variable, consists in
drawing the domain of definition (z-plane) and the domain
of values (w-plane) in separate complex planes.

• The function w = f (z) is then regarded as a mapping of
points in the z-plane onto points in the w-plane.

• The point w is also called the image of the point z.
• More information is usually exhibited by sketching images

of specific families of curves in the z-plane.
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Conformal Mapping
• A mapping with the property that angles between curves

are preserved in magnitude as well as in direction is called
a conformal mapping.

• Thus any set of orthogonal curves in the z-plane would
therefore appear as another set of orthogonal curves in the
w-plane.

• Conformal mapping function can be found in the class of
analytic function subject to certain conditions.

Theorem
Let the function f be analytic on a region D of the complex
plane and let its derivative f ′ has no zeros there. Then the
mapping defined by f is conformal in D.
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Conformal Mapping and Laplace’s Equation
• The Laplace’s equation is invariant under conformal

mapping.
• This forms the basis of a method of solving numerous

two-dimensional boundary-value problems such as the
Dirichlet problem and the Neumann problem.

• In various applied problems, by means of conformal maps,
problems for certain “physical regions” are transplanted
into problems on some standardized “model regions”
where they can be solved easily.

• By transplanting back we obtain the solutions of the
original problems in the physical regions.

• This process is used, for example, for solving problems
about fluid flow, electrostatics, heat conduction,
mechanics, and aerodynamics. These applications of
conformal maps will be discussed later.
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Conformal Mapping and Dirichlet Problem
Let Ω be a simply connected region in the complex plane with
boundary Γ, and let φ be a continuous real-valued function on
Γ. The Dirichlet problem consists in finding a function u
satisfying the conditions:

1. u is continuous in Ω ∪ Γ.
2. u is harmonic in Ω.
3. u = φ on Γ.

It can be shown that the function u has the form

u(z) =
1

2πi

∫
Γ
φ(w)

1− |f (z)|2

|f (w)− f (z)|2
f ′(w)

f (w)
dw , z ∈ Ω,

where f is a one-to-one analytic function that maps Ω onto a
unit disk. The integral in the formula above is a complex
integral.
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Some Types of Conformal Mapping

There are various classes of conformal mappings that
frequently arise in applications. Some of these are:
• Moebius Transformations
• Schwarz-Christoffel Mapping
• Riemann Map
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Moebius Transformation
Definition
A Moebius transfomation (MT) is function defined by

w = f (z) =
az + b
cz + d

,

where a, b, c, d are complex constants such that ad 6= bc.

• For c 6= 0, MT has a simple pole at z = −d/c.
•

dw
dz

=
ad − bc
(cz + d)2 6= 0

• MT is also known as a fractional linear transformation.
• Since MT =⇒ cwz + dw − az − b = 0,which is linear in

both w and z, MT is also known as a bilinear
transformation.
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The Linear Function
• The linear function

f (z) = z + b,

where b is a complex constant, always describes a
translation.

• The linear function

f (z) = az, a 6= 0, 1,

where a is a complex constant, always describes a rotation
and a magnification.

• Thus the linear function

w = f (z) = az + b

can be considered as a mapping which comprises of
translation, rotation and magnification.
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The Inverse Function

The inverse transformation is w = f (z) = 1/z.
• The image of a line under the inverse transformation is

either a line or a circle.
• The image of a circle under the inverse transformation is

either a line or a circle.
• If we think of a straight line as a circle with infinite radius,

then the set of circles and straight lines is known as the
generalized circles.

• The inverse transformation w = 1/z maps generalized
circles to generalized circles.
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MT and Generalized Circles

• Observe that MT may be written as

w =
az + b
cz + d

=

a
c
(cz + d) +

bc − ad
c

cz + d
=

a
c
+

bc − ad
c

· 1
cz + d

.

• This shows that MT is a series of several elementary
transformations: rotation, magnification, and inversion.

• Note that a linear transformations maps straight lines to
straight lines, and circles to circles, while the inverse
transformation maps generalized circles to generalized
circles.

• Thus MT must also maps generalized circles to
generalized circles.
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General Rule
Suppose:
• Γ: Generalized Circle (line or circle)

• BLT: w = f (z) =
az + b
cz + d

, ad 6= bc.

• Therefore f has a simple pole atz = −d
c .

General Rule:
• z = −d/c ∈ Γ =⇒ f (−d/c) = ∞ =⇒ The image of G is

unbounded =⇒ f (Γ) is a straight line.
• z = −d/c 6∈ Γ =⇒ f (G) is bounded =⇒ f (Γ) is a circle.

Note:
• Two points determine a line.
• Three points determine a circle.
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Three Points Determine a Circle (Formula)

The center z0 = x0 + iy0 of the circle through

z1 = x1 + iy1, z2 = x2 + iy2, z3 = x3 + iy3

satisfies the simultaneous equation

2(x1 − x2)x0 + 2(y1 − y2)y0 = |z1|2 − |z2|2,
2(x1 − x3)x0 + 2(y1 − y3)y0 = |z1|2 − |z3|2.

The radius is given by r = |z0 − z1| = |z0 − z2| = |z0 − z3|.
Therefore the equation of the circle is |z − z0| = r .
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Three Points Determine a Circle (Proof)
Since z1 and z2 are equidistant to the center z0, we have

|z1 − z0| = |z2 − z0|
|z1 − z0|2 = |z2 − z0|2

(z1 − z0)(z1 − z0) = (z2 − z0)(z2 − z0)

(z1 − z0)(z1 − z0) = (z2 − z0)(z2 − z0)

|z1|2 − z1z0 − z1z0 + |z0|2 = |z2|2 − z2z0 − z2z0 + |z0|2

|z1|2 − |z2|2 = (z1 − z2)z0 + (z1 − z2)z0

= (z1 − z2)z0 + (z1 − z2)z0

= 2Re (z1 − z2)z0

= 2(x1 − x2)x0 + 2(y1 − y2)y0.

Repeat the previous calculation with z3 in place of z2 gives

|z1|2 − |z3|2 = 2(x1 − x3)x0 + 2(y1 − y3)y0.
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Finding Specific MT

• Previous Problem: Given MT, determine the image in the
w-plane of a given generalized circle in a z-plane under.

• Next Problem: Find a specific MT that maps a given
generalized circle in a z-plane to a given generalized circle
in a w-plane.

• Lines: Knowledge of two distinct points is enough to
determine the equation of the line passing through those
points.

• Circles: Three distinct points suffice.
• Generalized Circles: Knowledge of the MT of three points

is enough to determine the formula of the transformation.
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Example: mapping the generalized circles in
z-plane onto the real axis in w-plane

Find MT which maps z1 → w1 = 0, z2 → w2 = 1, and
z3 → w3 = ∞.
Solution: Plugging the given mapping points into the MT, we get

az1 + b
cz1 + d

= 0,
az2 + b
cz2 + d

= 1,
az3 + b
cz3 + d

= ∞.

Thus b = −az1 and d = −cz3, and the middle equation
becomes

(z2 − z1)a
(z2 − z3)c

= 1.

Choose a = z2 − z3, c = z2 − z1. Therefore

b = −az1 = −z1(z2 − z3), d = −cz3 = −z3(z2 − z1).

Hence the required MT is

w =
az + b
cz + d

=
(z2 − z3)z − z1(z2 − z3)

(z2 − z1)z − z3(z2 − z1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
. 17



Cross-Ratio Formula
Definition
The cross-ratio of the four points z, z1, z2, and z3, is denoted by
the ordered coordinates (z, z1, z2, z3), that is,

(z, z1, z2, z3) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

Theorem (Cross-Ratio Formula)
The MT which maps z1 → w1, z2 → w2, and z3 → w3 is

(w , w1, w2, w3) = (z, z1, z2, z3)

which is the same as solving for w in terms of z from

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.
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Proof of Cross-Ratio Formula
Let W = f (z) = (z, z1, z2, z3) be the MT that maps the finite
points z1, z2, and z3 onto the points W1 = 0, W2 = 1, and
W3 = ∞, respectively. This mapping corresponds to the
mapping of the generalzed circles in z-plane onto the real axis
in W -plane. Also let W = g(w) = (w , w1, w2, w3) be the MT
that maps the finite points w1, w2, and w3 onto the points
W1 = 0, W2 = 1, and W3 = ∞, respectively. This mapping
corresponds to the mapping the of generalzed circles in
w-plane onto the real axis in W -plane. Hence

w = g−1(W ) = g−1(f (z)),

which implies
g(w) = f (z).

This is equivalent to

(w , w1, w2, w3) = (z, z1, z2, z3).
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Cross-Ratio Formula

• Solving for w in terms of z from

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

gives the desired MT which maps z1 → w1, z2 → w2, and
z3 → w3.

• If one of the zi or wi is ∞, the MT is obtained from the
Cross-Ratio Formula by simply deleting the factors
involving ∞.

20


