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Conformal Mapping and its Applications

Outline:
e Conformality
Bilinear transformation, Symmetry principle

Schwarz-Christoffel transformation, Riemann map

Boundary Value Problems, Equipotentials, Streamlines

Electrostatics, Heat Flow, Fluid Mechanics
Airfoil, Joukowski transformation
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Geometric Meaning of Complex Functions

e The graph of a real-valued function of a real variable can
often be displayed on a two-dimensional coordinate
diagram.

o However, for w = f(z), where z and w are complex
variables, a graphical representation of the function f
would require displaying a collection of four real numbers
in a four-dimensional coordinate diagram.

¢ Since this is not accessible to our geometric visualization,
some alternatives are called for.
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Geometric Meaning of Complex Functions

¢ A commonly used graphical representation of a
complex-valued function of a complex variable, consists in
drawing the domain of definition (z-plane) and the domain
of values (w-plane) in separate complex planes.

e The function w = f(Z) is then regarded as a mapping of
points in the z-plane onto points in the w-plane.

e The point w is also called the image of the point z.

e More information is usually exhibited by sketching images
of specific families of curves in the z-plane.
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Conformal Mapping

¢ A mapping with the property that angles between curves
are preserved in magnitude as well as in direction is called
a conformal mapping.

e Thus any set of orthogonal curves in the z-plane would
therefore appear as another set of orthogonal curves in the
w-plane.

e Conformal mapping function can be found in the class of
analytic function subject to certain conditions.

Theorem

Let the function f be analytic on a region D of the complex
plane and let its derivative f' has no zeros there. Then the
mapping defined by f is conformal in D.
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Conformal Mapping and Laplace’s Equation

The Laplace’s equation is invariant under conformal
mapping.

This forms the basis of a method of solving numerous
two-dimensional boundary-value problems such as the
Dirichlet problem and the Neumann problem.

In various applied problems, by means of conformal maps,
problems for certain “physical regions” are transplanted
into problems on some standardized “model regions”
where they can be solved easily.

By transplanting back we obtain the solutions of the
original problems in the physical regions.

This process is used, for example, for solving problems
about fluid flow, electrostatics, heat conduction,
mechanics, and aerodynamics. These applications of
conformal maps will be discussed later.
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Conformal Mapping and Dirichlet Problem
Let Q be a simply connected region in the complex plane with
boundary I', and let ¢ be a continuous real-valued function on
I'. The Dirichlet problem consists in finding a function u
satisfying the conditions:

1. uis continuous in QUT.

2. uis harmonic in Q.
3. u=¢onl.
It can be shown that the function u has the form

1 1—]f(z)\2 f'(w)
R R e e

where f is a one-to-one analytic function that maps Q onto a
unit disk. The integral in the formula above is a complex
integral.




Some Types of Conformal Mapping

There are various classes of conformal mappings that
frequently arise in applications. Some of these are:

e Moebius Transformations
e Schwarz-Christoffel Mapping
e Riemann Map




Moebius Transformation

Definition
A Moebius transfomation (MT) is function defined by
az+b
w=f(z)= ozt d

where a, b, ¢, d are complex constants such that ad # bc.

e For c # 0, MT has a simple pole at z = —d/c.

[ )
aw ad — bc
dz ~ (cz+d)? 70
e MT is also known as a fractional linear transformation.
e Since MT = cwz + dw — az — b = 0,which is linear in
both w and z, MT is also known as a bilinear

transformation.
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The Linear Function
e The linear function
f(z)=z+ b,

where b is a complex constant, always describes a
translation.
e The linear function

f(z)=az, a#0,1,

where a is a complex constant, always describes a rotation
and a magnification.
e Thus the linear function
w=f(z)=az+b

can be considered as a mapping which comprises of
translation, rotation and magnification.
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The Inverse Function

The inverse transformationis w = f(z) = 1/z.

e The image of a line under the inverse transformation is
either a line or a circle.

e The image of a circle under the inverse transformation is
either a line or a circle.

¢ If we think of a straight line as a circle with infinite radius,
then the set of circles and straight lines is known as the
generalized circles.

e The inverse transformation w = 1/z maps generalized
circles to generalized circles.
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MT and Generalized Circles
e Observe that MT may be written as

bc — ad
bc—ad. 1
c cz+d’

a
az+b E(CZ+d)+
W_cz+d_ cz+d

_a
S C

e This shows that MT is a series of several elementary
transformations: rotation, magnification, and inversion.

¢ Note that a linear transformations maps straight lines to
straight lines, and circles to circles, while the inverse
transformation maps generalized circles to generalized
circles.

e Thus MT must also maps generalized circles to
generalized circles.




General Rule

Suppose:
e [: Generalized Circle (line or circle)
o _az+b
e BLT: w=1(2) = it d’ ad # bc.

« Therefore f has a simple pole atz = — <.
General Rule:

e z=—-d/cel = f(—-d/c) =00 = Theimage of G is

unbounded = f(I) is a straight line.

e z=—-d/c¢T = f(G)isbounded — f(I') is a circle.
Note:

¢ Two points determine a line.

e Three points determine a circle.




Three Points Determine a Circle (Formula)

The center zg = xg + iy of the circle through
zZy=x1+iy1,22 = Xo +iy2, 23 = X3+ Iy3
satisfies the simultaneous equation

2(x1 — X)X +2(1 — Y2)¥o = |z1]° — | 22,
2(x1 — X3)Xo +2(y1 — ya)yo = |z1* — |zs .

The radius is given by r = |2y — z1| = |2g — 22| = |20 — z3].
Therefore the equation of the circle is |z — zp| = r.




Three Points Determine a Circle (Proof)
Since zy and z, are equidistant to the center z,, we have
121 — 20| = |22 — 20|
21 — 20|* = |22 — 20
(21 — 20)(21 — 20) = (22 — 20)(22 — 20)
(21 — 20)(21 — 20) = (22 — 20)(Z2 — 20)
21 — 2120 — Z120 + |20]? = |22 — 2220 — Z220 + |20
217 = |z2f? = (21 — 22)Z0 + (Z1 — Z2) 20
= (21— 22)20 + (21 — 22)20
=2Re (21 — 20)2y
=2(x1 — X2)Xo +2(y1 — ¥y2)Yo-
Repeat the previous calculation with z3 in place of z» gives

|21 [? — |23]% = 2(x1 — X3)X0 + 2(¥1 — ¥3)Yo-
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Finding Specific MT

e Previous Problem: Given MT, determine the image in the
w-plane of a given generalized circle in a z-plane under.

e Next Problem: Find a specific MT that maps a given
generalized circle in a z-plane to a given generalized circle
in a w-plane.

¢ Lines: Knowledge of two distinct points is enough to
determine the equation of the line passing through those
points.

e Circles: Three distinct points suffice.

e Generalized Circles: Knowledge of the MT of three points
is enough to determine the formula of the transformation.




Example: mapping the generalized circles in
z-plane onto the real axis in w-plane

Find MT which maps z; — wy =0, 2z — w» = 1, and

Z3 — W3 = oQ.

Solution: Plugging the given mapping points into the MT, we get
az1+b_ a22+b_ 323+b_
CZ1—|—d_ ’ CZg—l—d_ ’ CZg+d_

Thus b = —azy and d = —cz3, and the middle equation

becomes

(z2—2z)a
(22— z3)C
Choose a =z, — z3,¢ = zo — z;. Therefore

=1.

b=—-azy =—-zi(zo — z3), d=—-cz3=—-23(z0 — z).
Hence the required MT is
_ az+b _ (22— 23)2 — z1(22 — 23) _ (z—2z1)(2z0 — z3)
cz+d (zo—2z1)z—2z3(z0—21) (z2—23) (20— 21)




Cross-Ratio Formula
Definition
The cross-ratio of the four points z, z{, z, and z3, is denoted by
the ordered coordinates (z, zq, 2o, z3), that is,

Theorem (Cross-Ratio Formula)
The MT which maps z; — wy, Zo — W, and z3 — Ws is

(W, wy, Wo, W3) = (2,21, 22, 23)
which is the same as solving for w in terms of z from

(W —wy)(Wp —ws) _ (2—21)(22 — 23)
(W—wa)(wo —wy) (z—23)(22—21) 18
@UED
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Proof of Cross-Ratio Formula
Let W = f(2) = (2, z1, 22, Z3) be the MT that maps the finite
points zy, Z», and z3 onto the points Wy =0, W, =1, and
W5 = oo, respectively. This mapping corresponds to the
mapping of the generalzed circles in z-plane onto the real axis
in W-plane. Also let W = g(w) = (w, wq, wa, w3) be the MT
that maps the finite points wq, w,, and ws onto the points
W; =0, Wo =1, and W3 = o, respectively. This mapping
corresponds to the mapping the of generalzed circles in
w-plane onto the real axis in W-plane. Hence

w=g ' (W)=g"(f(2))
which implies

This is equivalent to

(W, wy, Wo, W3) = (2,21, 22,23).
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Cross-Ratio Formula

e Solving for w in terms of z from

(Ww—w)(wo —ws) (Z2—21)(22 — 23)

(Ww—w3)(we —wy)  (Z2-23)(z2 — 21)
gives the desired MT which maps zy — wy, Zo — Ww»p, and
Z3 — Wa.
e If one of the z; or w; is oo, the MT is obtained from the

Cross-Ratio Formula by simply deleting the factors
involving oco.




