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Chap 6: Complex Series

Outline:
• Convergence Tests
• Power Series
• Taylor Series
• Laurent Series
• Zeroes and Singularities of Analytic Functions
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Overview of Chap 6
• In calculus, several convergence tests for real series have

been studied: divergence test, integral test, comparison
test, ratio test, root test.

• The notions of power series and Taylor series for
representing real functions are also discussed in calculus.

• This chapter shall extend these ideas to series of complex
numbers or functions of complex variables.

• The complex Taylor series for representing analytic
functions has generalization to Laurent series which has
no analogue in calculus.

• Based on Laurent series, several facts on the zeros and
singularities of analytic functions can be established.

• Knowledge of Laurent series is necessary in developing a
powerful technique for evaluating complex integrals (Chap
7).
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Sequence of Complex Numbers

Definition
A sequence of complex numbers {zn}∞n=1 = z1, z2, z3, . . . is said
to have a limit complex number A or converge to A, and written
as

lim
n→∞

zn = A or zn → A, when n →∞

if for any ε > 0, there exists an integer N such that

|zn − A| ≤ ε for all n ≥ N.

A sequence that does not converge is said to be divergent.
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Theorem on Limits of Sequences

Theorem
If lim zn = A and lim wn = B, then
(a) lim(zn ± wn) = lim zn ± lim wn = A± B,
(b) lim(znwn) = (lim zn)(lim wn) = AB,

(c) lim
zn

wn
=

lim zn

lim wn
=

A
B

, provided B 6= 0.

The definition for sequence of complex numbers can be
extended to sequence of functions of a complex variable as
shown next.
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Sequence of Complex Functions
Definition
Let {un(z)}∞n=1 = u1(z), u2(z), u3(z), . . ., denote a sequence of
functions of z defined on a region Ω of the complex plane. The
sequence {un(z)}∞n=1 is said to have a limit complex function
U(z) or converges to U, and written as

lim
n→∞

un(z) = U(z) or un(z) → U(z), when n →∞

if for any ε > 0, there exists an integer N(ε, z) such that

|un(z)− U(z)| ≤ ε for all n ≥ N.

A sequence that does not converge at some point z ∈ Ω is said
to be divergent at z.
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Uniform Convergence

• Recall the definition of convergence:

lim
n→∞

un(z) = U(z) or un(z) → U(z), when n →∞

if for any ε > 0, there exists an integer N(ε, z) such that

|un(z)− U(z)| ≤ ε for all n ≥ N.

• If N = N(ε), i.e. N depends only on ε and not on z ∈ Ω, we
say that {un(z)}∞n=1 converges uniformly, or is uniformly
convergent, to U(z) for all z in Ω.
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Series of Complex Numbers
• The infinite series of complex numbers

∞∑
n=1

zn = z1 + z2 + z3 + · · ·+ zn + · · ·

with zn = xn + iyn, is said to be convergent if the
sequence of partial sums

S1 = z1, S2 = z1 + z2, S3 = z1 + z2 + z3, . . .

form a converging sequence.
• If lim

n→∞
Sn = S, then S is the called the sum of the series

and we write
∞∑

n=1

zn = S.

• If the sequence {Sn} does not posses a limit, we say that
the series

∑∞
n=1 zn diverges. 8



Divergence Test & Geometric Series

Theorem (Divergence Test)
If limn→∞ zn is different from zero (or does not exist), then∑∞

n=1 zn diverges.

Theorem (Geometric Series Theorem)
Let r be any complex number, and let c 6= 0 and m ≥ 0. Then
the geometric series

∑∞
n=m crn converges if and only if |r | < 1.

For |r | < 1
∞∑

n=m

crn =
crm

1− r
.
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Absolute Convergence Test

Theorem
If
∑∞

n=1 |zn| converges, then
∑∞

n=1 zn converges (absolutely).

Theorem
The infinite series

∑∞
n=1 zn converges if and only if for any

ε > 0, there is an integer N such that

|zn+1 + zn+2 + · · ·+ zm| < ε

for all m ≥ n ≥ N.
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Ratio Test

Theorem (Ratio Test)
Let

∑∞
n=1 zn be a series of complex numbers with zn 6= 0 for

n ≥ 1 and that

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = r (possibly ∞).

Then the series
∑∞

n=1 zn converges if r < 1 and diverges if
r > 1. If r = 1, then from this test alone we cannot draw any
conclusion about the convergence of the series.
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Root Test

Theorem (Root Test)
Let

∑∞
n=1 zn be a series of complex numbers and that

lim
n→∞

n
√
|zn| = r (possibly ∞).

Then the series
∑∞

n=1 zn converges if r < 1 and diverges if
r > 1. If r = 1, then from this test alone we cannot draw any
conclusion about the convergence of the series.
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Series of Complex Functions
The definition of series of complex numbers can be extended to
series of functions of complex variable z. Let

{un(z)}∞n=1 = u1(z), u2(z), u3(z), . . . ,

denote a sequence of functions of z defined in a region Ω of the
complex plane. The infinite series

∞∑
n=1

un(z) = u1(z) + u2(z) + u3(z) + · · ·+ un(z) + · · ·

is said to be convergent in Ω if the sequence of partial sums

S1(z) = u1(z), S2(z) = u1(z)+u2(z), S3(z) = u1(z)+u2(z)+u3(z), . . .

form a converging sequence in Ω. If lim
n→∞

Sn(z) = f (z),then f is
the called the sum of the series and we write

∞∑
n=1

un(z) = f (z).

If the sequence {Sn(z)} does not posses a limit at some point
z ∈ Ω, we say that the series

∑∞
n=1 un(z) diverges at z.
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Uniform Convergence and Weierstrass M-Test
• If the sequence of partial sums {Sn(z)} converges

uniformly in Ω, we say that the series
∑∞

n=1 un(z)
converges uniformly, or is uniformly convergent, to f (z)
for all z in Ω.

• The following test is often adequate for proving the uniform
convergence of some series.

Theorem (Weierstrass M-Test)
If |un(z)| ≤ Mn where Mn is a positive constant independent of
z in a region Ω and

∑∞
n=0 Mn converges, then

∑∞
n=0 un(z) is

uniformly convergent in Ω.

• By applying Weierstrass M-Test, it can be shown that the
geometric series converges uniformly in every closed disk
|z| ≤ ρ < 1.
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Benefits of Uniform Convergence

Theorem
Suppose un(z) is analytic in a region Ω and

∑∞
n=1 un(z) = f (z)

uniformly in Ω. Then f (z) is analytic in Ω.

Theorem (Differentiation Term-by-Term)
Suppose un(z) is continuously differentiable in a region Ω,∑∞

n=1 un(z) = f (z) in Ω, and
∑∞

n=1 u′n(z) = g(z) uniformly in Ω.
Then

d
dz

∞∑
n=1

un(z) =
∞∑

n=1

u′n(z) = f ′(z) = g(z).
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Another Benefit of Uniform Convergence

Theorem (Integration Term-by-Term)
Suppose un(z) is continuous in a region Ω and∑∞

n=1 un(z) = f (z) uniformly in Ω. Then f (z) is continuous in Ω
and ∫

Γ

( ∞∑
n=1

un(z)

)
dz =

∞∑
n=1

∫
Γ

un(z) dz =

∫
Γ

f (z) dz,

where Γ is a curve in Ω.

16



Power Series
The geometric series

∑∞
n=0 zn is a special case of a general

type of series known as the power series.

Definition
A series of the form

∑∞
n=0 an(z − z0)

n, where z0, an are
complex constants, is called the power series. The constants
an are called the coefficients of the power series.

Given a power series, several questions arise naturally:
• Does it converge?
• If so, where?
• Now for each fixed z, a power series is an infinite series of

complex contants. So whatever we know about infinite
series in the previous section applies.
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Convergence & Divergence of Power Series
Theorem
For any power series

∑∞
n=0 an(z − z0)

n, there exists a real
number R (0 ≤ R ≤ ∞), which depends only on the
coefficients an, such that one of the following cases holds:
(a) The series converges for |z − z0| = R = 0, i.e. only for

z = z0.
(b) The series converges for |z − z0| = R = ∞, i.e. for all

values of z.
(c) For 0 < R < ∞, the series converges for |z − z0| < R and

diverges for |z − z0| > R, while for |z − z0| = R it may or
may not converge.

Geometrically the equation |z − z0| = R, for 0 < R < ∞,
decribes a circle of radius R with center at z = z0. For this
reason, R is called the radius of convergence and the circle
|z − z0| = R is called the circle of convergence.
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Uniform Convergence of Power Series
By Weierstrass M-Test, one can established the uniform
convergence of power series.

Theorem
Suppose the power series

∑∞
n=0 an(z − z0)

n has radius of
convergence R > 0. If 0 < ρ < R, then the power series
converges uniformly and absolutely in |z − z0| ≤ ρ.

• A power series converges uniformly and absolutely in any
region entirely inside its circle of convergence.

• A power series can be differentiated and integrated
term-by-term inside its circle of convergence, as long as
the curve of integration lies inside the circle of
convergence.
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Power Series and Analytic Function
Theorem
The power series f (z) =

∑∞
n=0 an(z − z0)

n, for |z − z0| < R, is
analytic in |z − z0| < R and its derivatives can be obtained by
differentiating term-by-term, i.e.

∞∑
n=1

nan(z − z0)
n−1 = f ′(z)

and this is valid in the same circle as the original series, i.e.
|z − z0| < R.

• A power series can be differentiated as many times as we
like and all results in power series which converge in the
same circle as the original series.

• Is there a formula between the coefficients an of the power
series and its sum f (z)? 20



Taylor Series
Theorem (Taylor Series Theorem)
Suppose f (z) is analytic in the region |z − z0| < R. Then f has
the Taylor series expansion

f (z) =
∞∑

n=0

f (n)(z0)

n!
(z − z0)

n, |z − z0| < R.

The Taylor series converges to f (z) for any z in the largest
open disk centered at z0 for which f is analytic.

• This formula clearly resembles the Taylor series studied in
calculus.

• This shows that a converging power series is a Taylor
series of its sum.
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Taylor Series Expansions of Elementary Functions

ez = 1 + z +
z2

2!
+ · · · =

∞∑
n=0

zn

n!
, |z| < ∞

sin z = z − z3

3!
+

z5

5!
+ · · · =

∞∑
n=1

(−1)n−1 z2n−1

(2n − 1)!
, |z| < ∞

cos z = 1− z2

2!
+

z4

4!
+ · · · =

∞∑
n=0

(−1)n z2n

(2n)!
, |z| < ∞

Log z = (z − 1)− (z − 1)2

2
+

(z − 1)3

3
+ · · ·

=
∞∑

n=1

(−1)n+1 (z − 1)n

n
, |z − 1| < 1
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Is Series Expansion About A Singular Point
Possible?

• If f is analytic at z0, then the series expansion of f analytic
in the neighborhood of z0 is the Taylor series.

• If we replaced the region of analyticity of f from the disk
centered at z0 to an annulus centered at z0, then the
analyticity of f at z0 is immaterial. What then is the possible
series expansion of f analytic in an annulus about z0?

• The search of a series expansion of a function f about a
point, which may or not be a singular point of f , leads to a
generalization of the Taylor series known as the Laurent
series due to Pierre Alphonse Laurent (1813-1854,
French).
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Laurent Series Expansion

Theorem (Laurent Series Theorem)
Let 0 ≤ r < R ≤ ∞. If f is analytic in the annulus
r < |z − z0| < R, then f has the Laurent series expansion

f (z) =
∞∑

n=−∞
an(z − z0)

n, r < |z − z0| < R,

where

an =
1

2πi

∫
|w−z0|=ρ

f (w)

(w − z0)n+1 dw , n = 0± 1± 2, . . .

for r < ρ < R.
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Remarks on Laurent Series
• The Laurent series includes the Taylor series as a special

case.
• Knowledge of Laurent series is necessary for our

discussion on residue theory for evaluating integrals in
Chapter 7.

• Sometimes the coefficients an in the Laurent series can be
calculated by manipulation of known series and partial
fractions.

• The Laurent series may contain an infinite number of both
negative and positive powers.

• In some cases, the Laurent series may contain a finite
number of negative powers but infinite number of positive
powers.

• Yet in another instance, a Laurent series may contain an
infinite number of negative powers but finite number of
positive powers. 25



Zeros and Singularities of Analytic Functions
Based on Taylor series and Laurent series, several facts on the
zeros and singularities of analytic functions can be established.

Definition
A point z0 is called a zero of order m for f if f is analytic at z0
and

f (z0) = · · · = f (m−1)(z0) = 0, f (m)(z0) 6= 0.

If m = 1, then z0 is called a simple zero for f .

Theorem
A function f has a zero of order m if and only if

f (z) = (z − z0)
mg(z),

where g is analytic at z0 and g(z0) 6= 0.
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Singularities of Analytic Functions
Suppose f (z) is not analytic at z0 but analytic in the puntured
disk 0 < |z − z0| < R. Thus f has an isolated singularity at z0.
Recall that the Laurent series expansion of a function f around
z0 may contains both negative and positive powers of (z − z0):

f (z) =
∞∑

n=−∞
an(z − z0)

n =
∞∑

n=1

a−n(z − z0)
−n +

∞∑
n=0

an(z − z0)
n

Hence the Laurent series is decomposed into two parts:
(a) The series

∑∞
n=1 a−n(z − z0)

−n which is analytic in
|z − z0| > 0. This series which contains only the negative
powers of z − z0 is called the principal part of f at z = z0.

(b) The series
∑∞

n=0 an(z − z0)
n which is analytic in

|z − z0| < R. This series which contains only the
nonnegative powers of z − z0 is called the regular part of
f at z = z0.
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Three Types of Isolated Singularity
The singularity of f at z0 is clearly reflected in the principal part.
The principal part has three possibilities which gives rise to
three types of isolated singularity of f at z0:
(a) The principal part did not appear, i.e. a−n = 0 for

n = 1, 2, 3, . . . . In this case, we say z0 is a removable
singularity for f .

(b) The principal part has a finite number of negative powers
of z − z0, i.e. a−m 6= 0 for some positive integer m but
a−n = 0 for all n > m. In this case, we say z0 is a pole of
order m for f . If m = 1, we called z0 as a simple pole for f .

(c) The principal part has an infinite number of negative
powers of z − z0, i.e. a−n 6= 0 for an infinite number
positive integer values of n. In this case, we say z0 is an
essential singularity for f .
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Theorem
Suppose f has an isolated singularity at z0. Then
(a) z0 is a removable singularity ⇔ |f | is bounder near z0 ⇔

limz→z0 f (z) exists ⇔ f can be redefined at z0 so that f is
analytic at z0.

(b) z0 is a pole of order m ⇔ |f | is unbounded near z0 ⇔
limz→z0 f (z) = ∞⇔ f can be rewritten as
f (z) = g(z)/(z − z0)

m where g is analytic at z0 with
g(z0) 6= 0.

(c) z0 is an essential singularity ⇔ |f | neither is bounded near
z0 nor goes to infinity as z → z0.

29



The following theorem relates the concepts of zeros and poles
of a function with its reciprocal.

Theorem

If f has a zero of order m at z0, then 1/f has a pole of order m
at z0. If f has a pole of order m at z0, then 1/f has a zero of
order m at z0. If f has a removable singularity at z0, then 1/f
also has a removable singularity at z0.
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