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Chap 5: Complex Integration

Outline:
• Curves on the Complex Plane
• Integration on the Complex Plane
• Fundamental Theorem
• Cauchy-Goursat Theorem
• Cauchy’s Integral Formula
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Complex Integration

A complex integral is a generalization of a real integral studied
in calculus in two ways:

• the function being integrated is a complex function,
• and the integration acts on arcs or closed curves.

Many problems in mathematics, physics, and statistics involve
real integrals in the form of∫ 2π

0
R(sin θ, cos θ) dθ,

∫ ∞

k
f (x) dx ,

∫ k

−∞
f (x) dx ,

∫ ∞

−∞
f (x) dx .

These integrals can be solved efficiently using the notion of
complex integrals.
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Complex Integral and Dirichlet Problem

Let Ω be a simply connected region in the complex plane with
boundary Γ, and let φ be a continuous real-valued function on
Γ. The Dirichlet problem consists in finding a function u
satisfying the conditions:

1. u is continuous in Ω ∪ Γ.
2. u is harmonic in Ω.
3. u = φ on Γ.

It can be shown that the function u has the form

u(z) =
1

2πi

∫
Γ
φ(w)

1− |f (z)|2

|f (w)− f (z)|2
f ′(w)

f (w)
dw , z ∈ Ω,

where f is a one-to-one analytic function that maps Ω onto a
unit disk. The integral in the formula above is a complex
integral.
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Curves on the Complex Plane

A complex integral is an integral of a complex function over a
certain curve on a complex plane.

Definition

A curve Γ on the complex plane is defined by a
complex-valued function z(t) on the real interval a ≤ t ≤ b as

Γ : z = z(t) = x(t) + iy(t), a ≤ t ≤ b, b > a.

The real variable t is called the parameter for curve, and the
representation above is called the parametric representation
of Γ. The initial point of Γ is z(a) = x(a) + iy(a) and the
terminal point of Γ is z(b) = x(b) + iy(b).

Thus a given curve on the complex plane has a specific
orientation, i.e. a directed curve. 5



Curves on the Complex Plane

Definition

A curve Γ is closed if z(a) = z(b).

A curve that is not closed is also known as an arc.

Definition

A curve Γ is simple if z(t1) 6= z(t2) for a ≤ t1 < t2 < b.

Geometrically speaking, a simple curve does not cross.

Definition

A curve Γ is continuous if the complex valued function z(t) is
continuous with respect to t .
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Curves on the Complex Plane

Definition

A curve Γ is differentiable if z ′(t) exists for a ≤ t ≤ b.

Definition

A curve Γ is said to be smooth if z ′(t) is continuous and
z ′(t) 6= 0 for a ≤ t ≤ b.

Geometrically, a tangent on a smooth curve is well defined and
it changes continuously. Thus a smooth curve does not contain
any corners or cusps. The term regular is sometimes used in
place of smooth.

Definition

A curve Γ said to be piecewise smooth, if it is a joint of
several smooth curves.
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Curves on the Complex Plane

Definition

If z = z(t), a ≤ t ≤ b parametrizes Γ, then the curve −Γ is
defined as

−Γ : z = z(−t), −b ≤ t ≤ −a

or
−Γ : z = z(a + b − t), a ≤ t ≤ b.

The curve −Γ is similar to the curve Γ but has the opposite
direction.

Definition

A closed simple curve is also known as a Jordan curve or a
loop.
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Curves on the Complex Plane

Definition

A Jordan curve Γ is said to be in a positive orientation if the
domain bounded by Γ is on the left when the curve is traversed
in its direction.

From calculus, a curve on the Cartesian plane may be defined
by the parametric representation x = x(t), y = y(t), t0 ≤ t ≤ t1.
If the graph of this equation sits on the complex plane, then the
parametrization is given by

z(t) = x(t) + i y(t), t0 ≤ t ≤ t1. (1)

Since the parametric representation of a curve on the
Cartesian plane is not unique, the curve on the complex plane
also has many possible parametric representations.
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Curves on the Complex Plane

In general a circle with the Cartesian equation of the form

(x − x0)
2 + (y − y0)

2 = r2

has the parametric representation

z(t) = z0 + reit , 0 ≤ t ≤ 2π, (2)

where z0 = x0 + iy0. Note that this equation is equivalent to

|z − z0| = r

which is a complex equation for the circle with centre z0 and
radius r . The parametrization above describes a circle in a
counterclockwise direction. For a clockwise direction, the
parametrization is

z(t) = z0 + re−it , −2π ≤ t ≤ 0. (3)
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Curves on the Complex Plane

In vector calculus, we learnt that a parametric representation
for the line through two distinct points u0 and u1 is given by

u = (1− t)u0 + tu1 = u0 + t(u1 − u0), 0 ≤ t ≤ 1.

Since complex numbers can be regarded as vectors, a
parametric representation for the line through two complex
distinct points z0 and z1 is given by

z(t) = (1− t)z0 + tz1 = z0 + t(z1 − z0), 0 ≤ t ≤ 1. (4)

with the initial point z0 and the end point z1.
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Integration on the Complex Plane

In calculus, the concept of integration is usually introduced
through the problem of finding area under a curve.
Consider a function f defined and continuous on the interval
a ≤ x ≤ b. Divide this interval into n subintervals by introducing
the points xk , k = 1, 2, . . . , n − 1, such that

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Let 4xk be defined as

4xk = xk − xk−1, k = 1, 2, . . . , n − 1,

and let x∗k denote any representative points satisfying

xk−1 ≤ x∗k ≤ xk , k = 1, 2, . . . , n − 1.

The definite integral of f from x = a to x = b is defined by∫ b

a
f (x) dx = lim

n→∞
Sn = lim

n→∞

n∑
k=1

f (x∗k )4xk

provided the limit exists.

12



Integration on the Complex Plane

The approach just described for defining the definite integral∫ b
a f (x) dx is also used in the same manner in defining a

complex integral.

Definition

Let f (z) be a complex function defined and continuous on the
directed curve Γ on the complex plane. Let zk ∈ Γ,
k = 0, 1, . . . , n, such that the point zk−1 precedes zk for
k = 1, 2, . . . , n. Let z∗k be a point on the subcurve from zk−1 to
zk for k = 1, 2, . . . , n. If ∆zk = zk − zk−1, define∫

Γ
f (z) dz = lim

n→∞

n∑
k=1

f (z∗k )∆zk ,

provided the limit exists. In this case, we say f is integrable on
the curve Γ.
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Properties of Complex Integration

Several properties of definite integrals in calculus also remain
valid for complex integrals.

Theorem

Suppose f and g are integrable on the curve Γ and c be any
complex constant. Then

(a)
∫

Γ
[f (z)± g(z)] dz =

∫
Γ

f (z) dz ±
∫

Γ
g(z) dz

(b)
∫

Γ
c f (z) dz = c

∫
Γ

f (z) dz

(c)
∫
−Γ

f (z) dz = −
∫

Γ
f (z) dz
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Parametrization Method for Complex Integration

Computing a complex integral by its definition is no easy task
since it involves computing limit of a sum. But if the curve Γ
admits a suitable parametrization, the problem of evaluating
complex integrals reduces to evaluating real integrals.

Theorem

Suppose Γ : z = z(t) = x(t) + iy(t), α ≤ t ≤ β, is a smooth
curve and f (z) = u(z) + iv(z) = u(x , y) + iv(x , y) is continuous
on Γ. Then ∫

Γ
f (z) dz =

∫ β

α
f (z(t))z ′(t) dt .
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Parametrization Independence

A complex integral is independent of any parametrization.

Theorem

Suppose f is continuous on the smooth curve Γ. Let z = z1(t),
a ≤ t ≤ b, and z = z2(t), c ≤ t ≤ d, be two different
parametrizations for Γ. Then∫

Γ
f (z) dz =

∫ b

a
f (z1(t))z ′1(t) dt =

∫ d

c
f (z2(t))z ′2(t) dt .
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Integration on a Piecewise Smooth Curve

Integrals along a piecewise smooth curve are evaluated as in
the following definition.

Definition

Suppose Γ is a piecewise smooth curve consisting of directed
smooth curves Γ1, Γ2, . . . , Γn. We write Γ = Γ1 + Γ2 + · · ·+ Γn.
Assume f is continuous on Γ. Then the complex integral of f
over Γ is defined by∫

Γ
f (z) dz =

∫
Γ1

f (z) dz +

∫
Γ2

f (z) dz + · · ·+
∫

Γn

f (z) dz.
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ML Inequality

A good upper bound estimate of the absolute value of the
complex integral is sometimes useful. For real integrals, if f (x)
is continuous on [a, b] and |f (x)| ≤ M for all x ∈ [a, b],we have∣∣∣∣∣

∫ b

a
f (x) dx

∣∣∣∣∣ ≤
∫ b

a
|f (x)|dx ≤ M(b − a).

The analogous result for complex integral is as follows.

Theorem (ML Inequality)

Suppose f is continuous on the curve Γ and assume |f (z)| ≤ M
for all z ∈ Γ. Then ∣∣∣∣∫

Γ
f (z) dz

∣∣∣∣ ≤ M L(Γ),

where L(Γ) is the arc length of Γ. 18



Fundamental Theorem of Calculus

• In calculus, the concepts of derivative and integral is
beautifully tied up in the Fundamental Theorem of
Calculus: Let f be continuous on [a, b] and suppose F is
any antiderivative of f on [a, b]. Then∫ b

a
f (x) dx = F (b)− F (a).

• This theorem is perhaps the most important one in the
study of calculus because it bridged together two dissimilar
notions of derivative and integral, which arose from
apparently unrelated problems (e.g. tangents and areas).

• This theorem has found a generalization in the theory of
complex integral given next.
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Fundamental Theorem of Complex Integration

Theorem (Fundamental Theorem)
If F (z) is analytic with continuous derivative F ′(z) = f (z) on a
region Ω that contains the piecewise smooth curve Γ : z = z(t),
α ≤ t ≤ β, then ∫

Γ
f (z) dz = F (z(β))− F (z(α)).

Observe that the evaluation of the integral above, subject to the
condition stated, only depends on the antiderivative F of f
evaluated at the end points of Γ. Hence the sometimes
cumbersome parametrization process of Γ can be totally
avoided, provided that an antiderivative of the integrand is
known.
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Cauchy-Goursat Theorem and Path Independence

In this section we shall discuss some results concerning
complex integral which have no analogues with the real integral
in calculus. First recall the following theorem studied in calculus
of several variables.

Theorem (Green’s Theorem)
Suppose Ω is a simply connected region bounded by the curve
Γ. Assume M(x , y), N(x , y), Mx(x , y), My (x , y), Nx(x , y),
Ny (x , y), are continuous over Ω ∪ Γ. Then∫

Γ
M(x , y) dx + N(x , y) dy =

∫∫
Ω

(
∂N
∂x

− ∂M
∂y

)
dx dy .
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Cauchy’s Theorem

Augustin Louis Cauchy (1789-1857, French) in the year 1814
made used of Green’s theorem to derive the following result.

Theorem (Cauchy’s Theorem)
Suppose f (z) is analytic inside and on the piecewise Jordan
curve Γ and f ′(z) is continuous on the same region. Then∫

Γ
f (z) dz = 0.

Later in 1900 Edward Goursat (1858-1936, French) proved the
same result above but without any need for continuity condition
on f ′(z). It will be established that if f (z) is analytic over the
region G, then so is f ′(z).
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Cauchy-Goursat Theorem

Theorem (Cauchy’s Theorem)
Suppose f (z) is analytic inside and on the piecewise Jordan
curve Γ and f ′(z) is continuous on the same region. Then∫

Γ
f (z) dz = 0.

Theorem (Cauchy-Goursat Theorem)
Let f (z) be analytic inside and on the piecewise Jordan curve
Γ. Then ∫

Γ
f (z) dz = 0.

The Cauchy-Goursat theorem is often called Cauchy’s integral
theorem or briefly Cauchy’s theorem.
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Path Independence

Cauchy-Goursat theorem leads to various remarkable results
related to complex integration that have many useful
applications. One such result is path independece of integral
with analytic function as its integrand.

Theorem (Path Independence)
Suppose f (z) is analytic in a simply connected region Ω. If Γ1
and Γ2 are two different curves entirely in Ω sharing the same
initial and terminal points , then∫

Γ1

f (z) dz =

∫
Γ2

f (z) dz.
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CGT for Multiply Connected Region

• Cauchy-Goursat theorem is also valid for
multiply-connected regions, i.e. regions which
geometrically contain holes.

• A simply-connected region has no holes in it and has only
one boundary.

• A doubly-connected region has one hole and has two
boundaries.

• A doubly-connected region can be converted into a
simply-connected region by introducing a crosscut, i.e. a
simple arc connecting the two boundaries.

• In general, an n-connected region has n − 1 holes in it and
has n boundaries.

• By introducing suitable n − 1 crosscuts, any
multiply-connected region can be transformed into
simply-connected region. 25



Loop Deformation Theorem

Another consequence of Cauchy-Goursat theorem is the
possibilty of replacing complicated closed curves with more
familiar ones for the purpose of integrating analytic functions
over specified regions.

Theorem (Loop Deformation Theorem)
Suppose f (z) is analytic in a region Ω. If Γ1 and Γ2 are two
loops contained in Ω such that one can be continuously
deformed into another without crossing a singularity of f , then∫

Γ1

f (z) dz =

∫
Γ2

f (z) dz.
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Cauchy’s Integral Formula

Theorem (Cauchy’s Integral Formula)
Suppose Γ is a loop in a counterclockwise direction with a any
point inside Γ. If f is analytic inside and on the loop Γ, then∫

Γ

f (z)

z − a
dz = 2πif (z)

∣∣∣∣
z=a

= 2πif (a). (5)

If we replaced a and z by z and w respectively in equation (5),
we get the alternative form of Cauchy’s integral formula:

f (z) =
1

2πi

∫
Γ

f (w)

w − z
dw . (6)

The above result is truly remarkable. Under a simple
hypothesis of f , the value of the function f at z, given by f (z), is
completely determined by the values of f on the loop Γ, f (w).
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Generalized Cauchy’s Integral Formula

The Cauchy’s integral formula can further be generalized to
give the Generalized Cauchy’s Integral Formula (GCIF) as
follows.

Theorem (GCIF)
Suppose Γ is a loop in a counterclockwise direction with a any
point inside Γ. If f is analytic inside and on the loop Γ, then∫

Γ

f (z)

(z − a)n+1 dz =
2πi
n!

f (n)(z)

∣∣∣∣
z=a

=
2πi
n!

f (n)(a), (7)

for n = 1, 2, 3, . . ..
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Interesting Interpretation of GCIF

Theorem (GCIF)
Suppose Γ is a loop in a counterclockwise direction with a any
point inside Γ. If f is analytic inside and on the loop Γ, then∫

Γ

f (z)

(z − a)n+1 dz =
2πi
n!

f (n)(z)

∣∣∣∣
z=a

=
2πi
n!

f (n)(a), (8)

for n = 1, 2, 3, . . ..

GCIF can also be alternatively written as

f (n)(z) =
n!

2πi

∫
Γ

f (w)

(w − z)n+1 dw , n = 1, 2, 3, . . . (9)

This result is also truly remarkable. The theorem means that if f
is analytic in a simply connected region Ω, then its derivatives
f ′, f ′′, . . . , f (n) are guaranteed to exist and analytic in Ω. 29



Limitations of CGT, CIF, GCIF

• Are there examples of complex integrals that could not be
evaluated by means of Cauchy-Goursat theorem, Cauchy’s
integral fomula or the generalized Cauchy’s integral
fomula?

• Plenty! Some examples are∫
|z|=2

z sin
(

1
z

)
dz,

∫
|z|=1

e
1
z dz,

∫
|z|=3

cot z dz.

• Chapter 7 develops a powerful technique known as the
Residue Theorem for the evaluation of these integrals.

• This technique requires knowledge of Laurent series,
which is a series of complex functions (Chapter 6).
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