
SGG 4653
Advance Database System

Introduction and Preliminaries of: Object-
oriented DBMS

Introduction to
Object DBMS

Outline

§ Advanced database applications.
§ Unsuitability of RDBMS for advanced database applications.
§ Object-oriented concepts.
§ Problems of storing objects in relational database.
§ The next generation of database systems.

Advanced Database Applications

§ Computer-Aided Design (CAD).
§ Computer-Aided Manufacturing (CAM).
§ Computer-Aided Software Engineering (CASE).
§ Network Management Systems.
§ Office Information Systems (OIS) and Multimedia Systems.
§ Digital Publishing.
§ Geographic Information Systems (GIS).
§ Interactive and Dynamic Web sites.
§ Other applications with complex and interrelated objects and

procedural data.

Computer-Aided Design (CAD)

§ Stores data relating to mechanical and electrical design, for
example, buildings, airplanes, and integrated circuit chips.
§ Designs of this type have some common characteristics:

– Data has many types, each with a small number of instances.
– Designs may be very large.
– Design is not static but evolves through time.
– Updates are far-reaching.
– Involves version control and configuration management.
– Cooperative engineering.

Advanced Database Applications

§ Computer-Aided Manufacturing (CAM)
– Stores similar data to CAD, plus data about discrete

production.
§ Computer-Aided Software Engineering (CASE)

– Stores data about stages of software development lifecycle.

Network Management Systems

§ Coordinate delivery of communication services across a
computer network.
§ Perform such tasks as network path management,

problem management, and network planning.
§ Systems handle complex data and require real-time

performance and continuous operation.
§ To route connections, diagnose problems, and balance

loadings, systems have to be able to move through this
complex graph in real-time.

Office Information Systems (OIS) and
Multimedia Systems

§ Stores data relating to computer control of information in a
business, including electronic mail, documents, invoices, and
so on.
§ Modern systems now handle free-form text, photographs,

diagrams, audio and video sequences.
§ Documents may have specific structure, perhaps described

using mark-up language such as SGML, HTML, or XML.

Digital Publishing

§ Becoming possible to store books, journals, papers, and
articles electronically and deliver them over high-speed
networks to consumers.
§ As with OIS, digital publishing is being extended to handle

multimedia documents consisting of text, audio, image, and
video data and animation.
§ Amount of information available to be put online is in the

order of petabytes (1015 bytes), making them largest
databases DBMS has ever had to manage.

Geographic Information Systems (GIS)

§ GIS database stores spatial and temporal information,
such as that used in land management and underwater
exploration.
§ Much of data is derived from survey and satellite

photographs, and tends to be very large.
§ Searches may involve identifying features based, for

example, on shape, color, or texture, using advanced
pattern-recognition techniques.

Interactive and Dynamic Web Sites

§ Consider web site with online catalog for selling clothes.
Web site maintains a set of preferences for previous visitors
to the site and allows a visitor to:
– obtain 3D rendering of any item based on color, size, fabric,

etc.;
– modify rendering to account for movement, illumination,

backdrop, occasion, etc.;
– select accessories to go with the outfit, from items presented

in a sidebar;
§ Need to handle multimedia content and to interactively

modify display based on user preferences and user
selections. Also have added complexity of providing 3D
rendering.

Weaknesses of RDBMS

§ Poor Representation of “Real World” Entities
– Normalization leads to relations that do not correspond to

entities in “real world”.

§ Semantic Overloading
– Relational model has only one construct for representing data

and data relationships: the relation.
– Relational model is semantically overloaded.

Weaknesses of RDBMS

§ Poor Support for Integrity and Enterprise Constraints

§ Homogeneous Data Structure
– Relational model assumes both horizontal and vertical

homogeneity.
– Many RDBMS now allow Binary Large Objects (BLOBs).

Weaknesses of RDBMS

§ Limited Operations
– RDBMS only have a fixed set of operations which cannot be

extended.

§ Difficulty Handling Recursive Queries
– Extremely difficult to produce recursive queries.
– Extension proposed to relational algebra to handle this type of

query is unary transitive (recursive) closure operation.
• Relation augmented with all tuples successfully deduced by

transitivity, e.g. : if (a,b) and (b,c) are tuples of R, than tuples
(a,c) is also added to result.

Example - Recursive Query

(a) Staff (b) Transitive Closure of Staff

Weaknesses of RDBMS

§ Impedance Mismatch
– Most Data Manipulation Language (DML) lack of

computational completeness.
– To overcome this, SQL can be embedded in a high-level 3GL.
– This produces an impedance mismatch - mixing different

programming paradigms.
– Estimated that as much as 30% of programming effort and

code space is expended on this type of conversion.

Weaknesses of RDBMS

§ Other Problems with RDBMS
– Transactions are generally short-lived and concurrency

control protocols not suited for long-lived transactions.
– Schema changes are difficult.
– RDBMS are poor at navigational access.

Object-Oriented Concepts

§ Abstraction, encapsulation, information hiding.
§ Objects and attributes.
§ Object identity.
§ Methods and messages.
§ Classes, subclasses, super classes, and inheritance.
§ Overloading.
§ Polymorphism and dynamic binding.

Abstraction

§ Process of identifying essential aspects of an entity and
ignoring unimportant properties.
§ Concentrate on what an object is and what it does, before

deciding how to implement it.

Encapsulation and Information Hiding

§ Encapsulation
– Object contains both data structure and set of operations used

to manipulate it.

§ Information Hiding
– Separate external aspects of an object from its internal details,

which are hidden from outside.

§ Allows internal details of an object to be changed without
affecting applications that use it, provided external details
remain same.

§ Provides data independence.

Object

Uniquely identifiable entity that contains both the attributes
that describe the state of a real-world object and the actions
associated with it.

– Definition very similar to definition of an entity, however,
object encapsulates both state and behavior; an entity only
models state.

Attributes

Contain current state of an object.

§ Attributes can be classified as simple or complex.
§ Simple attribute can be a primitive type such as integer,

string, etc., which takes on literal values.
§ Complex attribute can contain collections and/or references.
§ Reference attribute represents relationship.
§ An object that contains one or more complex attributes is

called a complex object.

Object Identity

Object identifier (OID) assigned to object when it is created
that is:

– System-generated.
– Unique to that object.
– Invariant.
– Independent of the values of its attributes (that is, its state).
– Invisible to the user (ideally).

Object Identity - Implementation

§ In RDBMS, object identity is value-based: primary key is used
to provide uniqueness.
§ Primary keys do not provide type of object identity required

in OO systems:
– key only unique within a relation, not across entire system;
– key generally chosen from attributes of relation, making it

dependent on object state.

Object Identity - Implementation

§ Programming languages use variable names and
pointers/virtual memory addresses, which also compromise
object identity.
§ In C/C++, OID is physical address in process memory space,

which is too small - scalability requires that OIDs be valid
across storage volumes, possibly across different computers.
§ Further, when object is deleted, memory is reused, which

may cause problems.

Advantages of OIDs

§ They are efficient.
§ They are fast.
§ They cannot be modified by the user.
§ They are independent of content.

Methods and Messages

Method
– Defines behavior of an object, as a set of encapsulated

functions.

Message
– Request from one object to another asking second object to

execute one of its methods.

Object Showing Attributes and Methods

Example of a Method

method void updateSalary(float increment)
{

salary = salary + increment;
}

Class

Blueprint for defining a set of similar objects.

§ Objects in a class are called instances.
§ Class is also an object with own class attributes and class

methods.

Subclasses, Superclasses, and Inheritance

Inheritance allows one class of objects to be defined as a
special case of a more general class.

§ Special cases are subclasses and more general cases are
superclasses.
§ Process of forming a superclass is generalization; forming a

subclass is specialization.
§ Subclass inherits all properties of its superclass and can

define its own unique properties.
§ Subclass can redefine inherited methods.

Subclasses, Superclasses, and Inheritance

§ All instances of subclass are also instances of superclass.
§ Principle of substitutability states that instance of subclass

can be used whenever method/construct expects instance
of superclass.
§ Relationship between subclass and superclass known as A

KIND OF (AKO) relationship.
§ Four types of inheritance: single, multiple, repeated, and

selective.

Single Inheritance

Multiple Inheritance

Repeated Inheritance

Overriding, Overloading, and Polymorphism

Overriding
– Process of redefining a property within a subclass.

Overloading
– Allows name of a method to be reused within a class or across

classes.

Polymorphism
– Means ‘many forms’. Three types: operation, inclusion, and

parametric.

Example of Overriding

§ Might define method in Staff class to increment salary based
on commission:

method void giveCommission(float branchProfit) {

salary = salary + 0.02 * branchProfit; }

§ May wish to perform different calculation for commission in
Manager subclass:

method void giveCommission(float branchProfit) {

salary = salary + 0.05 * branchProfit; }

Dynamic Binding

§ Runtime process of selecting appropriate method based
on an object’s type.

§ With list consisting of an arbitrary number of objects from
the Staff hierarchy, we can write:

– list[i]. print

§ and runtime system will determine which print() method
to invoke depending on the object’s (sub)type.

Complex Objects

§ An object that consists of subobjects but is viewed as a
single object.
§ Objects participate in a A-PART-OF (APO) relationship.
§ Contained object can be encapsulated within complex

object, accessed by complex object’s methods.
§ Or have its own independent existence, and only an OID is

stored in complex object.

Storing Objects in Relational Databases

§ One approach to achieving persistence with an OOPL is to
use an RDBMS as the underlying storage engine.

§ Requires mapping class instances (i.e. objects) to one or
more tuples distributed over one or more relations.

§ To handle class hierarchy, have two basics tasks to
perform:
– design relations to represent class hierarchy;
– design how objects will be accessed.

• Write code to decompose objects into tuples & store
decomposed objects in relations

• Write code to read tuples from relation & reconstruct objects

Storing Objects in Relational Databases

Mapping Classes to Relations

§ Number of strategies for mapping classes to relations,
although each results in a loss of semantic information.

(1) Map each class or subclass to a relation:

Staff (staffNo, fName, lName, position, sex, DOB, salary)
Manager (staffNo, bonus, mgrStartDate)
SalesPersonnel (staffNo, salesArea, carAllowance)
Secretary (staffNo, typingSpeed)

Mapping Classes to Relations

(2) Map each subclass to a relation

Manager (staffNo, fName, lName, position, sex, DOB, salary, bonus,
mgrStartDate)
SalesPersonnel (staffNo, fName, lName, position, sex, DOB, salary,
salesArea, carAllowance)
Secretary (staffNo, fName, lName, position, sex, DOB, salary,
typingSpeed)

(3) Map the hierarchy to a single relation

Staff (staffNo, fName, lName, position, sex, DOB, salary, bonus,
mgrStartDate, salesArea, carAllowance, typingSpeed, typeFlag)

Sample implementation for Manager
in 1st case

EXEC SQL INCLUDE sqlca;
EXEC SQL BEGIN DECLARE SECTION;
class Manager : public Staff {
public:

Manager (int, char *, char *, char *, char, int, int, int,
float, float, int, int, int);
~Manager();
void print();

Private:
float bonus;
Date mgrStartDate; }

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE sqlca;
EXEC SQL BEGIN DECLARE SECTION;
class Manager {
public:

Manager (int, char *, char *, char *, char, int, int, int,
float, float, int, int, int);
~Manager();
void print();

Private:
int staffNo;
char fName[15];
char lName[15];
char position[10];
char sex;
Date DOB;
float salary;
float bonus;
Date mgrStartDate; }

EXEC SQL END DECLARE SECTION;

Sample implementation for Manager
in 2nd case

Next Generation Database Systems

§ First Generation DBMS: Network and Hierarchical
– Required complex programs for even simple queries.
– Minimal data independence.
– No widely accepted theoretical foundation.

§ Second Generation DBMS: Relational DBMS
– Helped overcome these problems.

§ Third Generation DBMS: OODBMS and ORDBMS.

History of Data Models

E.g. Hierarchical Model

Branch

Staff Project Loan

Sales

Customer

Sales

JB Branch

Ali Project A Loan 1

Sales 1

Lim Loan 2 Sales 1

Sales 2 Sales 3

Customer 1

Sales 3

• Redundancy of records
• Operation only from root

E.g. Hierarchical Model

Object-Oriented DBMS:
Concepts and Design

Object-Oriented Data Model

§ No one agreed object data model. One definition:

§ Object-Oriented Data Model (OODM)
– Data model that captures semantics of objects supported in

object-oriented programming.

§ Object-Oriented Database (OODB)
– Persistent and sharable collection of objects defined by an ODM.

§ Object-Oriented DBMS (OODBMS)
– Manager of an ODB.

Object-Oriented Data Model

§ Zdonik and Maier present a threshold model that an
OODBMS must, at a minimum, satisfy:

– It must provide database functionality.
– It must support object identity.
– It must provide encapsulation.
– It must support objects with complex state.

Object-Oriented Data Model

§ Khoshafian and Abnous define OODBMS as:
– OO = ADTs + Inheritance + Object identity
– OODBMS = OO + Database capabilities.

§ Parsaye et al. gives:
– High-level query language with query optimization.
– Support for persistence, atomic transactions: concurrency and recovery

control.
– Support for complex object storage, indexes, and access methods.
– OODBMS = OO system + (1), (2), and (3).

Commercial OODBMSs

§ GemStone from Gemstone Systems Inc.,
§ Itasca from Ibex Knowledge Systems SA,
§ Objectivity/DB from Objectivity Inc.,
§ ObjectStore from eXcelon Corp.,
§ Ontos from Ontos Inc.,
§ Poet from Poet Software Corp.,
§ Jasmine from Computer Associates/Fujitsu,
§ Versant from Versant Object Technology.

Origins of the Object-Oriented Data Model

Persistent Programming Languages (PPLs)

§ Language that provides users with ability to (transparently)
preserve data across successive executions of a program,
and even allows such data to be used by many different
programs.

§ In contrast, database programming language (e.g. SQL)
differs by its incorporation of features beyond persistence,
such as transaction management, concurrency control, and
recovery.

Persistent Programming Languages (PPLs)

§ PPLs eliminate impedance mismatch by extending
programming language with database capabilities.
– In PPL, language’s type system provides data model, containing rich

structuring mechanisms.

§ In some PPLs procedures are ‘first class’ objects and are
treated like any other object in language.
– Procedures are assignable, may be result of expressions, other

procedures or blocks, and may be elements of constructor types.
– Procedures can be used to implement ADTs.

Persistent Programming Languages (PPLs)

§ PPL also maintains same data representation in memory as
in persistent store.
– Overcomes difficulty and overhead of mapping between the

two representations.
§ Addition of (transparent) persistence into a PPL is important

enhancement to IDE, and integration of two paradigms
provides more functionality and semantics.

Alternative Strategies for Developing an
OODBMS

§ Extend existing object-oriented programming language.
– GemStone extended Smalltalk.

§ Provide extensible OODBMS library.
– Approach taken by Ontos, Versant, and ObjectStore.

§ Embed OODB language constructs in a conventional host
language.
– Approach taken by O2,which has extensions for C.

Alternative Strategies for Developing an
OODBMS

§ Extend existing database language with object-oriented
capabilities.
– Approach being pursued by RDBMS and OODBMS vendors.
– Ontos and Versant provide a version of OSQL.

§ Develop a novel database data model/language.

Single-Level vs. Two-Level Storage Model

§ Traditional programming languages lack built-in support for
many database features.
§ Increasing number of applications now require functionality

from both database systems and programming languages.
§ Such applications need to store and retrieve large amounts

of shared, structured data.

Single-Level vs. Two-Level Storage Model

§ With a traditional DBMS, programmer has to:
– Decide when to read and update objects.
– Write code to translate between application’s object model

and the data model of the DBMS.
– Perform additional type-checking when object is read back

from database, to guarantee object will conform to its original
type.

Single-Level vs. Two-Level Storage Model

§ Difficulties occur because conventional DBMSs have two-
level storage model: storage model in memory, and database
storage model on disk.
§ In contrast, OODBMS gives illusion of single-level storage

model, with similar representation in both memory and in
database stored on disk.
– Requires clever management of representation of objects in

memory and on disk (called “pointer swizzling”).

Two-Level Storage Model for RDBMS

Single-Level Storage Model for OODBMS

Object Referencing

§ Need to distinguish between resident and non-resident
objects.
§ Most techniques variations of edge marking or node

marking.
§ Edge marking marks every object pointer with a tag bit:

– if bit set, reference is to memory pointer;
– else, still pointing to OID and needs to be swizzled when object it

refers to is faulted into.

Object Referencing

§ Node marking requires that all object references are
immediately converted to virtual memory pointers when
object is faulted into memory.
§ First approach is software-based technique but second can

be implemented using software or hardware-based
techniques.

Hardware-Based Schemes

§ Use virtual memory access protection violations to detect
accesses of non-resident objects.
§ Use standard virtual memory hardware to trigger transfer

of persistent data from disk to memory.
§ Once page has been faulted in, objects are accessed via

normal virtual memory pointers and no further object
residency checking is required.
§ Avoids overhead of residency checks incurred by software

approaches.

Accessing an Object with a RDBMS

Accessing an Object with an OODBMS

Persistent Schemes

§ Consider three persistent schemes:

– Checkpointing.
– Serialization.
– Explicit Paging.

§ Note, persistence can also be applied to (object) code and to
the program execution state.

Checkpointing

§ Copy all or part of program’s address space to secondary
storage.
§ If complete address space saved, program can restart from

checkpoint.
§ In other cases, only program’s heap saved.
§ Two main drawbacks:

– Can only be used by program that created it.
– May contain large amount of data that is of no use in

subsequent executions.

Serialization

§ Copy closure of a data structure to disk.
§ Write on a data value may involve traversal of graph of

objects reachable from the value, and writing of flattened
version of structure to disk.
§ Reading back flattened data structure produces new copy of

original data structure.
§ Sometimes called serialization, pickling, or in a distributed

computing context, marshaling.

Serialization

§ Two inherent problems:
– Does not preserve object identity.
– Not incremental, so saving small changes to a large data

structure is not efficient.

Explicit Paging

§ Explicitly ‘page’ objects between application heap and
persistent store.
§ Usually requires conversion of object pointers from disk-

based scheme to memory-based scheme.
§ Two common methods for creating/updating persistent

objects:
– Reachability-based.
– Allocation-based.

Orthogonal Persistence

§ Three fundamental principles:

– Persistence independence.
– Data type orthogonality.
– Transitive persistence (originally referred to as ‘persistence

identification’ but ODMG term ‘transitive persistence’ used
here).

Persistence Independence

§ Persistence of object independent of how program
manipulates that object.
§ Conversely, code fragment independent of persistence of

data it manipulates.
§ Should be possible to call function with its parameters

sometimes objects with long term persistence and
sometimes only transient.
§ Programmer does not need to control movement of data

between long-term and short-term storage.

Data Type Orthogonality

§ All data objects should be allowed full range of persistence
irrespective of their type.
§ No special cases where object is not allowed to be long-

lived or is not allowed to be transient.
§ In some PPLs, persistence is quality attributable to only

subset of language data types.

Transitive Persistence

§ Choice of how to identify and provide persistent objects at
language level is independent of the choice of data types in
the language.
§ Technique that is now widely used for identification is

reachability-based.

Orthogonal Persistence - Advantages

§ Improved programmer productivity from simpler semantics.
§ Improved maintenance.
§ Consistent protection mechanisms over whole environment.
§ Support for incremental evolution.
§ Automatic referential integrity.

Orthogonal Persistence - Disadvantages

§ Some runtime expense in a system where every pointer
reference might be addressing persistent object.
– System required to test if object must be loaded in from disk-

resident database.
§ Although orthogonal persistence promotes transparency,

system with support for sharing among concurrent processes
cannot be fully transparent.

OODBMS Issues
§ Long duration transaction
§ Versions
§ Schema evolution

Transaction Support

Transaction
Action, or series of actions, carried out by user or
application, which accesses or changes contents of
database.

§ Logical unit of work on the database.
§ Application program is series of transactions with non-

database processing in between.
§ Transforms database from one consistent state to another,

although consistency may be violated during transaction.

Example Transaction

Transaction Support

§ Can have one of two outcomes:
– Success: transaction commits and database reaches a new

consistent state.
– Failure: transaction aborts, and database must be restored to

consistent state before it started.
– Such a transaction is rolled back or undone.

§ Committed transaction cannot be aborted.
§ Aborted transaction that is rolled back can be restarted

later.

Properties of Transactions

§Four basic (ACID) properties of a transaction are:

Atomicity ‘All or nothing’ property.
Consistency Must transform database from one consistent state to

another.
Isolation Partial effects of incomplete transactions should not be

visible to other transactions.
Durability Effects of a committed transaction are permanent and

must not be lost because of later failure.

OODBMS Transaction
§ Transactions of application with complex objects can be much

longer than those of business transactions
§ Unit of concurrency control & recovery normally an object
§ Unacceptable when long transaction aborted owing to a lock

conflict

Timestamping

Timestamp
A unique identifier created by DBMS that indicates relative
starting time of a transaction.

§ Can be generated by using system clock at time transaction
started, or by incrementing a logical counter every time a
new transaction starts.

© Pearson Education Limited 1995, 2005

Timestamping

§ Read/write proceeds only if last update on that data item
was carried out by an older transaction.
§ Otherwise, transaction requesting read/write is restarted

and given a new timestamp.
§ Also timestamps for data items:

– read-timestamp - timestamp of last transaction to read item;
– write-timestamp - timestamp of last transaction to write item.

© Pearson Education Limited 1995, 2005

Multiversion Timestamp Ordering

§ Versioning of data can be used to increase concurrency.
§ Basic timestamp ordering protocol assumes only one

version of data item exists, and so only one transaction can
access data item at a time.
§ Can allow multiple transactions to read and write different

versions of same data item, and ensure each transaction
sees consistent set of versions for all data items it accesses.

Nested Transaction Model

§ Transaction viewed as hierarchy of subtransactions.
§ Top-level transaction can have number of child transactions.
§ Each child can also have nested transactions.
§ In Moss’s proposal, only leaf-level subtransactions allowed to

perform database operations.
§ Transactions have to commit from bottom upwards.
§ However, transaction abort at one level does not have to affect

transaction in progress at higher level.

Nested Transaction Model

§ Parent allowed to perform its own recovery:
– Retry subtransaction.
– Ignore failure, in which case subtransaction non-vital.
– Run contingency subtransaction.
– Abort.

§ Updates of committed subtransactions at intermediate
levels are visible only within scope of their immediate
parents.

Nested Transaction Model

§ Further, commit of subtransaction is conditionally subject
to commit or abort of its superiors.
§ Using this model, top-level transactions conform to

traditional ACID properties of flat transaction.

Versions

§ Allows changes to properties of objects to be managed so
that object references always point to correct object version.

§ Itasca identifies 3 types of versions:
– Transient Versions.
– Working Versions.
– Released Versions.

Versions and Configurations

Versions and Configurations

Schema Evolution

§ Some applications require considerable flexibility in
dynamically defining and modifying database schema.
§ Typical schema changes:

(1) Changes to class definition:
(a) Modifying Attributes.
(b) Modifying Methods.

Schema Evolution

(2) Changes to inheritance hierarchy:
(a) Making a class S superclass of a class C.
(b) Removing S from list of superclasses of C.
(c) Modifying order of superclasses of C.

(3) Changes to set of classes, such as creating and deleting
classes and modifying class names.

§ Changes must not leave schema inconsistent.

Schema Consistency

1. Resolution of conflicts caused by multiple inheritance
and redefinition of attributes and methods in a subclass.

1.1 Rule of precedence of subclasses over superclasses.
1.2 Rule of precedence between superclasses of a different

origin.
1.3 Rule of precedence between superclasses of the same

origin.

Schema Consistency

2. Propagation of modifications to subclasses.

2.1 Rule for propagation of modifications.
2.2 Rule for propagation of modifications in the event of

conflicts.
2.3 Rule for modification of domains.

Schema Consistency

3. Aggregation and deletion of inheritance relationships
between classes and creation and removal of classes.

3.1 Rule for inserting superclasses.
3.2 Rule for removing superclasses.
3.3 Rule for inserting a class into a schema.
3.4 Rule for removing a class from a schema.

Client-Server Architecture

§ Three basic architectures:

– Object Server.
– Page Server.
– Database Server.

Object Server

§ Distribute processing between the two components.
§ Typically, client is responsible for transaction management

and interfacing to programming language.
§ Server responsible for other DBMS functions.
§ Best for cooperative, object-to-object processing in an open,

distributed environment.

Page and Database Server

Page Server
§ Most database processing is performed by client.
§ Server responsible for secondary storage and providing pages

at client’s request.

Database Server
§ Most database processing performed by server.
§ Client simply passes requests to server, receives results and

passes them to application.
§ Approach taken by many RDBMSs.

Client-Server Architecture

Architecture - Storing and Executing Methods

§ Two approaches:
– Store methods in external files.
– Store methods in database.

§ Benefits of latter approach:
– Eliminates redundant code.
– Simplifies modifications.

Architecture - Storing and Executing Methods

– Methods are more secure.
– Methods can be shared concurrently.
– Improved integrity.

§ Obviously, more difficult to implement.

Object Operations Version 1 (OO1)
Benchmark

§ Intended as generic measure of OODBMS performance.
Designed to reproduce operations common in advanced
engineering applications, such as finding all parts connected
to a random part, all parts connected to one of those parts,
and so on, to a depth of seven levels.

§ About 1990, benchmark was run on GemStone, Ontos,
ObjectStore, Objectivity/DB, and Versant, and INGRES and
Sybase. Results showed an average 30-fold performance
improvement for OODBMSs over RDBMSs.

OO7 Benchmark

§ More comprehensive set of tests and a more complex
database based on parts hierarchy.
§ Designed for detailed comparisons of OODBMS products.
§ Simulates CAD/CAM environment and tests system

performance in area of object-to-object navigation over
cached data, disk-resident data, and both sparse and dense
traversals.
§ Also tests indexed and non-indexed updates of objects,

repeated updates, and the creation and deletion of objects.

OODBMS Manifesto

§ Complex objects must be supported.
§ Object identity must be supported.
§ Encapsulation must be supported.
§ Types or Classes must be supported.
§ Types or Classes must be able to inherit from their ancestors.
§ Dynamic binding must be supported.
§ The DML must be computationally complete.

OODBMS Manifesto

§ The set of data types must be extensible.
§ Data persistence must be provided.
§ The DBMS must be capable of managing very large databases.
§ The DBMS must support concurrent users.
§ DBMS must be able to recover from hardware/software

failures.
§ DBMS must provide a simple way of querying data.

OODBMS Manifesto

§ The manifesto proposes the following optional features:
– Multiple inheritance, type checking and type inferencing,

distribution across a network, design transactions and
versions.

§ No direct mention of support for security, integrity, views or
even a declarative query language.

Advantages of OODBMSs

§ Enriched Modeling Capabilities.
§ Extensibility.
§ Removal of Impedance Mismatch.
§ More Expressive Query Language.
§ Support for Schema Evolution.
§ Support for Long Duration Transactions.
§ Applicability to Advanced Database Applications.
§ Improved Performance.

Disadvantages of OODBMSs

§ Lack of Universal Data Model.
§ Lack of Experience.
§ Lack of Standards.
§ Query Optimization compromises Encapsulation.
§ Object Level Locking may impact Performance.
§ Complexity.
§ Lack of Support for Views.
§ Lack of Support for Security.

Object-Oriented Database Design

Relationships

§ Relationships represented using reference attributes, typically
implemented using OIDs.
§ Consider how to represent following binary relationships

according to their cardinality:
– 1:1
– 1:*
– *:*

1:1 Relationship Between Objects A and B

§ Add reference attribute to A and, to maintain referential
integrity, reference attribute to B.

1:* Relationship Between Objects A and B

§ Add reference attribute to B and attribute containing set of
references to A.

: Relationship Between Objects A and B

§ Add attribute containing set of references to each object.
§ For relational database design, would decompose *:N into

two 1:* relationships linked by intermediate entity. Can also
represent this model in an ODBMS.

: Relationships

Alternative Design for *:* Relationships

Referential Integrity

Several techniques to handle referential integrity:

§ Do not allow user to explicitly delete objects.
– System is responsible for “garbage collection”.

§ Allow user to delete objects when they are no longer
required.
– System may detect invalid references automatically and set

reference to NULL or disallow the deletion.

Referential Integrity

§ Allow user to modify and delete objects and relationships
when they are no longer required.
– System automatically maintains the integrity of objects.
– Inverse attributes can be used to maintain referential integrity.

Behavioral Design

§ EER approach must be supported with technique that
identifies behavior of each class.

§ Involves identifying:
– public methods: visible to all users
– private methods: internal to class.

§ Three types of methods:
– constructors and destructors
– access
– transform.

Behavioral Design - Methods

§ Constructor - creates new instance of class.
§ Destructor - deletes class instance no longer required.
§ Access - returns value of one or more attributes (Get).
§ Transform - changes state of class instance (Put).

Identifying Methods

§ Several methodologies for identifying methods, typically
combine following approaches:
– Identify classes and determine methods that may be usefully

provided for each class.
– Decompose application in top-down fashion and determine

methods required to provide required functionality.

