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Chap 4: Elementary Functions of Complex
Variables

Outline:
• Complex Exponential Function
• Complex Trigonometric Functions
• Complex Hyperbolic Functions
• Complex Logarithmic Functions

2



Elementary Complex Functions

In calculus, several derivative formulas have been established
for the elementary functions of real variables, such as the
exponential, trigonometric, logarithm, hyperbolic, and the
inverse functions. In this chapter we shall extend the definitions
of the elementary functions from real variables to complex
variables and obtain derivative formulas for them. We begin
with the construction of a suitable definition for the complex
exponential function, which forms a basis for defining other
elementary functions of complex variables.
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Complex exponential function

We wish to construct the complex exponential function ez that
would retain as many properties as in the real case. Thus we
certainly want ez to satisfy the following three notable
properties:

(a) ez reduces to ex when Im z = 0.
(b) ez ew = ez+w

(c) ez is analytic.

(d)
d
dz

ez = ez .
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Definition of Complex Exponential Function
Definition

If z = x + iy , then the complex exponential function ez is
defined by

ez = ex(cos y + i sin y).

• ez has the polar form r(cos θ + i sin θ) representation.
Hence

|ez | = ex , arg ez = y + 2kπ,

with k integers.
• Since ex > 0, the function ez 6= 0 for all z.
• If in the definition of ez , we set x = 0 and y = θ, we obtain

eiθ = cos θ + i sin θ.

Hence
z = x + iy = r(cos θ + i sin θ) = reiθ. 5



Properties of ez

Theorem

Suppose z, w are complex numbers and n is a positive integer.
Then

1. ezew = ez+w

2.
ez

ew = ez−w

3. (ez)n = enz

4. |ez | = ex = eRe z

5. ez is periodic with the imaginary period 2πi
6. If k is an integer, then

6.1 ez = 1 if and only if z = 2kπi .
6.2 ez = ew if and only if z = w + 2kπi .

7. If g(z) is analytic, then d
dz eg(z) = eg(z)g′(z).
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Complex Trigonometric Functions
From the Euler’s formula,

eix = cos x + i sin x , e−ix = cos x − i sin x ,

where x is real. Adding and subtracting these two equations:

eix + e−ix = 2 cos x , eix − e−ix = 2i sin x

which are equivalent to

cos x =
eix + e−ix

2
, sin x =

eix − e−ix

2i
.

This suggests

Definition

If z = x + iy , then the complex cosinus and sinus functions of a
complex variable z are defined respectively by

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.
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Properties of Complex Sine and Cosine Functions
1. sin(x + iy) = sin x cosh y + i cos x sinh y
2. cos(x + iy) = cos x cosh y − i sin x sinh y
3. The inequalities | sin x | ≤ 1 and | cos x | ≤ 1 are no longer

true for sin z and cos z.
4. The equation sin z = 0 has solutions on the complex plane

only at z = nπ, n = 0,±1,±2, . . ..
5. The equation cos z = 0 has solutions on the complex

plane only at z = (2n + 1)π/2, n = 0,±1,±2, . . ..
6. sin(−z) = − sin z cos(−z) = cos z
7. sin2 z + cos2 z = 1
8. sin(z ± w) = sin z cos w ± cos z sin w
9. cos(z ± w) = cos z cos w ∓ sin z sin w

10. sin(2z) = 2 sin z cos w , cos(2z) = cos2 z − sin2 z
11. sin(z + π

2 ) = cos z
12. sin(z) = sin z, cos(z) = cos z
13. d

dz sin z = cos z, d
dz cos z = − sin z 8



The following other trigometric functions of a complex variable
are defined in the same way as in the real case:

tan z =
sin z
cos z

, cot z =
cos z
sin z

=
1

tan z
, csc z =

1
sin z

, sec z =
1

cos z
.

Based on our calculus knowledge, we can immediately
conclude that

d
dz

tan z = sec2 z,

d
dz

cot z = − csc2 z,

d
dz

csc z = − csc z cot z,

d
dz

sec z = sec z tan z.
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Complex Hyperbolic Functions
The real hyperbolic functions are defined as

sinh x =
ex − e−x

2
,

cosh x =
ex + e−x

2
.

This suggests that we define the complex hyperbolic functions
as

sinh z =
ez − e−z

2
, (1)

cosh z =
ez + e−z

2
. (2)
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Properties of Complex Sinh and Cosh Functions
1. The functions cosh z and sinh z are both entire functions.
2. sinh z = sinh x cos y + i cosh x sin y
3. cosh z = cosh x cos y + i sinh x sin y .
4. d

dz cosh z = sinh z, d
dz sinh z = cosh z.

5. sinh(iz) = i sin z, cosh(iz) = cos z
6. cosh2 z − sinh2 z = 1
7. sinh(z ± w) = sinh z cosh w ± cosh z sinh w
8. cosh(z ± w) = cosh z cosh w ± sinh z sinh w
9. sinh(2z) = 2 sinh z cosh w

10. cosh(2z) = cosh2 z + sinh2 z
11. The functions sinh z and cosh z are each periodic with

imaginary period 2πi , a property not found in the real case.
12. The solutions of sinh z = 0 lie on the imaginary axis.
13. All roots of cosh z = 0 also lie on the imaginary axis, i.e.,

z = ±2n + 1
2

πi , n = 0, 1, 2, . . . . 11



The other complex hyperbolic functions are defined in the same
manner as in the real case:

tanh z =
sinh z
cosh z

, coth z =
cosh z
sinh z

=
1

tanh z
,

csch z =
1

sinh z
, sech z =

1
cosh z

.

Thus it can be shown that

(tanh z)′ = sech 2z,

(coth z)′ = −csch 2z,

(csch z)′ = −csch z coth z,

(sech z)′ = −sech z tanh z.
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Complex Logarithmic Function
In calculus,

x = ey ⇔ y = ln x ⇒ eln x = x .

This suggests we define the complex logarithm function ln z
such that it satisfies

eln z = z.

Definition
For z 6= 0, define

ln z = ln |z|+ i arg z.

WHY?

• ln |z| may be computed with the help of a calculator.
• Since arg z is multiple valued, then so is the function ln z.
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• In calculus, ln 1 = 0. In complex variables, ln 1 has
infinitely many values.

• In calculus, ln(−1) is undefined since ln x is valid only for
x > 0. In complex variables, ln(−1) is meaningful.

• In calculus, the formula

ln(xy) = ln x + ln y

is valid with the restriction that x and y are positive reals. If
w and z are complex, can we still have

ln(zw) = ln z + ln w?

If it is so, what are the restrictions on z and w?
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The Laws of Complex Logarithm

The following relations hold for certain specified values of the
logarithms:

ln(zw) = ln z + ln w
ln(z/w) = ln z − ln w

ln zn/m =
n
m

ln z

ln ez = z
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Principal Value Logarithm

• The function ln z can be made single valued by suitably
restricting the range of values for arg z.

• Recall that the value of arg z can be made unique by
restricting it to the interval −π < θ ≤ π. This unique value
is called the principal argument of z and is denoted by
Arg z.

• This suggests defining the principal value of ln z, denoted
by Ln z, as the value of ln z that employs the principal
argument of z, i.e.,

Ln z = ln |z|+ iArg z.

Threfore the function Ln z always has a unique value.
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Continuity of Ln z = ln |z|+ iArg z
• Ln z is a combination of two functions ln |z| and Arg z.
• The function ln |z| is continuous on the entire complex

plane except at the point z = 0.
• Arg z satisfies −π < Arg z ≤ π. Arg z is not continuous at

z = 0 because it is undefined there. Arg z is also not
continuous along the negative Re z-axis. (WHY?)

• Conclusion, the function Ln z is continuous on a region R
consisting of the entire complex plane with the negative
Re z-axis removed. The line Re z ≤ 0 is called the branch
cut for Ln z.

• In other words, the function Ln z fails to be continuous at
points z such that Re z ≤ 0 and Im z = 0.

• In general, the function Ln (f (z)) fails to be continuous at
points z such that

Re f (z) ≤ 0 and Im f (z) = 0.
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Derivative of Ln z
In calculus, it is proven that

d
dx

ln x =
1
x

for x > 0. The following theorem shows that the derivative
formula also holds for Ln z.

Theorem
Let R denote the domain consisting of the complex plane with
the branch cut removed. Then Ln z is analytic on R, and

d
dz

Ln z =
1
z

.

The domains of continuity and analyticity of Ln z are the same,
i.e., Ln z is not analytic at points z such that

Re z ≤ 0 and Im z = 0.
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