
SGG 4653
Advance Database System

Semi-structured Data and XML

Semi-structured Data

§ Data that may be irregular or incomplete and have a
structure that may change rapidly or unpredictably.

§ Semi-structured data is data that has some structure, but the
structure may not be rigid, regular, or complete.

§ Generally, data does not conform to fixed schema
(sometimes use terms schema-less or self-describing).

Semi-structured Data

§ Information normally associated with schema is contained
within data itself.

§ Some forms of Semi-structured data have no separate
schema, in others it exists but only places loose constraints
on data.

§ Unfortunately, relational, object-oriented, and object-
relational DBMS do not handle data of this nature particularly
well.

Semi-structured Data

§ Has gained importance recently for various reasons:
– may be desirable to treat Web sources like a database, but

cannot constrain these sources with a schema;
– may be desirable to have a flexible format for data exchange

between disparate databases;
– emergence of XML as standard for data representation and

exchange on the Web, and similarity between XML documents
and Semi-structured data

• Based on query languages that traverse a tree-labeled
representation

Example

§ Note, data is not regular:
– for Ali Muhammad, hold first and last names, but for Siti

Fatima store single name and also store a salary;
– for property at 2 Manor Rd, store a monthly rent whereas

for property at 18 Dale Rd, store an annual rent;
– for property at 77 Jalan Ilmu, store property type (flat) as a

string, whereas for property at 9 Jalan Setia 3, store type
(house) as an integer value.

Graphical representation of example

“35 Jalan Indah 10”

“Ali” “Muhammad”

“Siti
Fatima”

“77 Jalan
Ilmu”

“9 Jalan
Setia 3”

SimeUEP

Object Exchange Model (OEM)

§ Sample model for semi-structured data.

§ Data in OEM is schema-less and self-describing, and can be
thought of as labeled directed graph where nodes are
objects, consisting of:
– unique object identifier (for example, &7),
– descriptive textual label (street),
– type (string),
– a value (“35 Jalan Indah 10”).

§ Objects are decomposed into atomic and complex:
– atomic object contains value for base type (e.g., integer or

string) and in diagram has no outgoing edges.
– All other objects are complex objects whose types are a set of

object identifiers.

Object Exchange Model (OEM)

§ A label indicates what the object represents and is used to
identify the object and to convey the meaning of the object,
and so should be as informative as possible.

§ Labels can change dynamically.

§ A name is a special label that serves as an alias for a single
object and acts as an entry point into the database (for
example, SimeUEP is a name that denotes object &1).

Object Exchange Model (OEM)

§ An OEM object can be considered as a quadruple (label, oid,
type, value).

§ For example:

{Staff, &4, set, {&9, &10}}
{name, &9, string, “Siti Fatima”}
{salary, &10, decimal, 12000}

Approaches to develop DBMS for
semi-structured data

§ Built on top of RDBMS

§ Built on top of OODBMS

§ Example DBMS for handling Semi-structured data:
– Lore / Lorel

Lore and Lorel

§ Lore (Lightweight Object REpository), is a multi-user DBMS,
supporting crash recovery, materialized views, bulk loading of
files in some standard format (XML is supported), and a
declarative update language.

§ Has an external data manager that enables data from
external sources to be fetched dynamically and combined
with local data.

Lorel

§ Lorel (the Lore language) is an extension to Object Query
Language (OQL). Lorel was intended to handle:

– queries that return meaningful results even when some data is
absent;

– queries that operate uniformly over single-valued and set-
valued data;

– queries that operate uniformly over data with different types;
– queries that return heterogeneous objects;
– queries where the object structure is not fully known.

Lorel

§ Supports declarative path expressions for traversing graph
structures and automatic coercion (force) for handling
heterogeneous and type less data.

§ A path expression is essentially a sequence of edge labels
(L1.L2…Ln), which for given graph yields set of nodes. For
example:
– SimeUEP.PropertyForRent yields set of nodes {&5, &6};
– SimeUEP.PropertyForRent.street yields set of nodes containing

strings {“77 Jalan Ilmu”, “9 Jalan Setia 3”}.

Lore and Lorel

§ Also supports general path expression that provides for
arbitrary paths:
– ‘|’ indicates selection;
– ‘?’ indicates zero or one occurrences;
– ‘+’ indicates one or more occurrences;
– ‘*’ indicates zero or more occurrences.

§ For example:
– SimeUEP.(Branch | PropertyForRent).street
– would match path beginning with SimeUEP, followed by either

a Branch edge or a PropertyForRent edge, followed by a street
edge.

Example Lorel Queries

Find properties overseen by Siti Fatima.

SELECT s.Oversees
FROM SimeUEP.Staff s
WHERE s.name = “Siti Fatima”

§ Data in FROM clause contains objects &3 and &4. Applying
WHERE restricts this set to object &4. Then apply SELECT
clause.

Graphical representation of example

“35 Jalan Indah 10”

“Ali” “Muhammad”

“Siti
Fatima”

“77 Jalan
Ilmu”

“9 Jalan
Setia 3”

SimeUEP

Example Lorel Queries

Answer:
PropertyForRent &5

street &11 “77 Jalan Ilmu”
type &12 “Flat”
monthlyRent &13 375
OverseenBy &4

PropertyForRent &6
street &14 “9 Jalan Setia 3”
type &15 1
annualRent &16 7200
OverseenBy &4

Example Lorel Queries

Find all properties with annual rent.

SELECT SimeUEP.PropertyForRent
FROM SimeUEP.PropertyForRent.annualRent

Answer:
PropertyForRent &6

street &14 “9 Jalan Setia 3”
type &15 1
annualRent &16 7200
OverseenBy &4

Example Lorel Queries

Find all staff who oversee two or more properties.

SELECT SimeUEP.Staff.Name
FROM SimeUEP.Staff SATISFIES

2 <= COUNT(SELECT SimeUEP.Staff
WHERE SimeUEP.Staff.Oversees)

Answer:
name &9 “Siti Fatima”

DataGuide

§ A dynamically generated and maintained structural summary
of database, which serves as a dynamic schema.

§ Has three properties:
– conciseness: every label path in the database appears exactly

once in the DataGuide;
– accuracy: every label path in DataGuide exists in original

database;
– convenience: a DataGuide is an OEM (or XML) object, so can be

stored and accessed using same techniques as for source
database.

DataGuide
SimeUEP

DataGuide

§ Can determine whether a given label path of length n exists
in source database by considering at most n objects in the
DataGuide.

§ For example, to verify whether path
Staff.Oversees.annualRent exists, need only examine
outgoing edges of objects &19, &21, and &22 in our
DataGuide.

§ Further, only objects that can follow Branch are the two
outgoing edges of object &20.

DataGuides

§ DataGuides can be classified as strong or weak:
– strong is where each set of label paths that share same

target set in the DataGuide is exactly the set of label paths
that share same target set in source database.

DataGuides

(a) weak DataGuide (b) strong DataGuide

SimeUEP SimeUEP

XML (eXtensible Markup Language)
§ A meta-language (a language for describing other

languages) that enables designers to create their own
customized tags to provide functionality not available with
HTML.

§ Most documents on Web currently stored and transmitted
in HTML.

§ One strength of HTML is its simplicity. Simplicity may also
be one of its weaknesses, with users wanting tags to
simplify some tasks and make HTML documents more
attractive and dynamic.

XML

§ To satisfy this demand, vendors introduced some browser-
specific HTML tags, making it difficult to develop
sophisticated, widely viewable Web documents.

§ W3C has produced XML, which could preserve general
application independence that makes HTML portable and
powerful.

XML

§ XML is a restricted version of Standard Generalized Markup
Language (SGML), designed especially for Web documents.

§ SGML allows document to be logically separated into two:
one that defines the structure of the document (DTD), other
containing the text itself.

§ By giving documents a separately defined structure, and by
giving authors ability to define custom structures, SGML
provides extremely powerful document management
system.

§ However, SGML has not been widely adopted due to its
inherent complexity.

XML

§ XML attempts to provide a similar function to SGML, but is
less complex and, at same time, network-aware.

§ XML retains key SGML advantages of extensibility, structure,
and validation.

§ Since XML is a restricted form of SGML, any fully compliant
SGML system will be able to read XML documents (although
the opposite is not true).

§ XML is not intended as a replacement for SGML or HTML.

Advantages of XML

§ Simplicity
§ Open standard and platform/vendor-independent
§ Extensibility
§ Reusable
§ Separation of content and presentation
§ Improved load balancing

Advantages of XML

§ Support for integration of data from multiple sources.

§ Ability to describe data from a wide variety of applications.

§ More advanced search engines.

§ New opportunities.

XML - Elements

§ Elements, or tags, are most common form of markup.

§ First element must be a root element, which can contain
other (sub)elements.

§ XML document must have one root element (<STAFFLIST>.
Element begins with start-tag (<STAFF>) and ends with end-
tag (</STAFF>).

§ XML elements are case sensitive.

§ An element can be empty, in which case it can be
abbreviated to <EMPTYELEMENT/>.

§ Elements must be properly nested.

XML - Attributes

§ Attributes are name-value pairs that contain descriptive
information about an element.

§ Attribute is placed inside start-tag after corresponding
element name with the attribute value enclosed in quotes.

<STAFF branchNo = “B005”>

§ Could also have represented branch as sub-element of
STAFF.

§ A given attribute may only occur once within a tag, while
sub-elements with same tag may be repeated.

XML – Other Sections

§ XML declaration: optional at start of XML document.

§ Entity references: serve various purposes, such as shortcuts
to often repeated text or to distinguish reserved characters
from content.
– Begin with &, end with ;
– Eg. < to represent <

§ Comments: enclosed in <!– and --> tags.

§ CDATA sections: instructs XML processor to ignore markup
characters and pass enclosed text directly to application.

§ Processing instructions: can also be used to provide
information to application.

XML – Ordering

§ Semi-structured data model described earlier assumes
collections are unordered.

§ In XML, elements are ordered:
<NAME>

<FNAME>Nadhirah</FNAME>
<LNAME>Khalim</LNAME>

</NAME>

Different from

<NAME>
<LNAME>Khalim</LNAME>
<FNAME>Nadhirah</FNAME>

</NAME>

XML – Ordering

§ In contrast, in XML attributes are unordered.

<NAME LNAME= “Khalim FNAME=“Nadhirah”/>

same as

<NAME FNAME=“Nadhirah” LNAME= “Khalim />

Document Type Definitions (DTDs)

§ Defines the valid syntax of an XML document.

§ Lists element names that can occur in document, which
elements can appear in combination with which other ones,
how elements can be nested, what attributes are available
for each element type, and so on.

§ Term vocabulary sometimes used to refer to the elements
used in a particular application.

§ Grammar specified using Extended Backus–Naur Form
(EBNF), not XML.

§ Although optional, DTD is recommended for document
conformity.

Document Type Definitions (DTDs)

DTDs – Element Type Declarations
§ Identify the rules for elements that can occur in the XML document.
§ Eg: <!ELEMENT STAFFLIST (STAFF)*> indicates STAFFLIST consists of zero

of more STAFF elements
§ Options for repetition are:

– * indicates zero or more occurrences for an element;
– + indicates one or more occurrences for an element;
– ? indicates either zero occurrences or exactly one occurrence for an

element.

§ Name with no qualifying punctuation must occur exactly once.
§ Commas between element names indicate they must occur in

succession; if commas omitted, elements can occur in any order.
<!ELEMENT STAFF (NAME, POSITION, DOB?, SALARY)> means what?

§ Base elements declared using special symbol #PCDATA indicate parsable
character data

§ Element can contain both other elements and #PCDATA

DTDs – Attribute List Declarations

§ Identify which elements may have attributes, what
attributes they may have, what values attributes may hold,
plus optional defaults.
§ Eg: <!ATTLIST STAFF branchNo CDATA #IMPLIED> states that

branchNo value is a string and is optional tith no default. (If
#REQUIRED means must always be provided)
§ Some types:
§ CDATA: character data, containing any text.
§ ID: used to identify individual elements in document (ID is

an element name).
§ IDREF/IDREFS: must correspond to value of ID attribute(s)

for some element in document.
§ List of names: values that attribute can hold (enumerated

type).

DTDs – Element Identity, IDs, IDREFs

§ ID allows unique key to be associated with an element.

§ IDREF allows an element to refer to another element with
the designated key, and attribute type IDREFS allows an
element to refer to multiple elements.

DTDs – Element Identity, IDs, IDREFs

§ To loosely model relationship Branch Has Staff:
– <!ATTLIST STAFF staffNo ID #REQUIRED>
– <!ATTLIST BRANCH staff IDREFS #IMPLIED>

<STAFF staffNo = “SL11”>
<NAME>

<FNAME>Ali</FNAME><LNAME>Selamat</LNAME>
</NAME>

</STAFF>
<STAFF staffNo = “SL13”>

<NAME>
<FNAME>Dira</FNAME><LNAME>Khalim</LNAME>

</NAME>
</STAFF>
<BRANCH staff = “SL11 SL13”>

<BRANCHNO>B007</BRANCH>
</BRANCH>

DTDs – Document Validity

§ Two levels of document processing: well-formed and valid.

§ Non-validating processor ensures an XML document is well-
formed before passing information on to application.

§ XML document that conforms to structural and notational
rules of XML is considered well-formed; e.g.:
– document must start with <?xml version “1.0”>;
– all elements must be within one root element;
– elements must be nested in a tree structure without any

overlap;
– All non empty elements must have start tag and end tag.

DTDs – Document Validity

§ Validating processor will not only check that an XML
document is well-formed but that it also conforms to a DTD,
in which case XML document is considered valid.

§ W3C proposed more expressive alternative to DTD: XML
Schema

DOM and SAX

§ XML APIs generally fall into two categories: tree-based and event-
based.

§ DOM (Document Object Model) is tree-based API that provides
object-oriented view of data.

§ API was created by W3C and describes a set of platform- and
language-neutral interfaces that can represent any well-formed
XML/HTML document.

§ Builds in-memory representation of document and provides
classes and methods to allow an application to navigate and
process the tree.

§ Eg: defines Node interface – has methods to access node’s
components such as parentNode() & childNode(),
add/delete/reorder elements

Representation of Document as Tree-Structure

SAX (Simple API for XML)

§ An event-based, serial-access API that uses callbacks to
report parsing events to application.

§ For example, there are events for start and end elements.
Application handles these events through customized event
handlers.

§ Unlike tree-based APIs, event-based APIs do not built an in-
memory tree representation of the XML document.

§ API product of collaboration on XML-DEV mailing list, rather
than product of W3C.

Namespaces

§ Allows element names and relationships in XML documents
to be qualified to avoid name collisions for elements that
have same name but defined in different vocabularies.

§ Allows tags from multiple namespaces to be mixed - essential
if data comes from multiple sources.

§ For uniqueness, elements and attributes given globally
unique names using URI reference.

Namespaces

<STAFFLIST xmlns=“http://www.simeuep.my/branch5/”
xmlns:hq = “http://www. simeuep.my/HQ/”>
<STAFF branchNo = “B005”>

<STAFFNO>SL21</STAFFNO>
…

<hq:SALARY>20000</hq:SALARY>
</STAFF>

</STAFFLIST>

http://www.simeuep.my/branch5/
http://www.simeuep.my/HQ/

XSL (eXtensible Stylesheet Language)
§ In HTML, default styling is built into browsers as tag set for

HTML is predefined and fixed.

§ Cascading Stylesheet Specification (CSS) provides alternative
rendering for tags. Can also be used to render XML in a
browser but cannot make structural alterations to a
document.

§ XSL created to define how XML data is rendered and to
define how one XML document can be transformed into
another document.

XSLT (XSL Transformations)

§ A subset of XSL, XSLT is a language in both markup and
programming sense, providing a mechanism to transform XML
structure into either another XML structure, HTML, or any
number of other text-based formats (such as SQL).

§ XSLT’s main ability is to change the underlying structures
rather than simply the media representations of those
structures, as with CSS.

XSLT

§ XSLT is important because it provides a mechanism for
dynamically changing the view of a document and for
filtering data.

§ Also robust enough to encode business rules and it can
generate graphics (not just documents) from data.

§ Can even handle communicating with servers (scripting
modules can be integrated into XSLT) and can generate the
appropriate messages within body of XSLT itself.

XPath

§ Declarative query language for XML that provides simple
syntax for addressing parts of an XML document.

§ Designed for use with XSLT (for pattern matching) and
XPointer (for addressing).

§ With XPath, collections of elements can be retrieved by
specifying a directory-like path, with zero or more
conditions placed on the path.

§ Uses a compact, string-based syntax, rather than a
structural XML-element based syntax, allowing XPath
expressions to be used both in XML attributes and in URIs.

XPointer

§ Provides access to values of attributes or content of
elements anywhere within an XML document.

§ Basically an XPath expression occurring within a URI.

§ Among other things, with XPointer can link to sections of
text, select particular elements or attributes, and navigate
through elements.

§ Can also select data contained within more than one set of
nodes, which cannot do with XPath.

Xpointer(/child::STAFF[attribute::branchNo=“B005”]to/child:
:STAFF[attribute::branchNo=B003”])

XLink

§ Allows elements to be inserted into XML documents to
create and describe links between resources.

§ Uses XML syntax to create structures that can describe links
similar to simple unidirectional hyperlinks of HTML as well
as more sophisticated links.

§ Two types of XLink: simple and extended.

§ Simple link connects a source to a destination resource; an
extended link connects any number of resources.

XHTML (eXtensible HTML) 1.0

§ Reformulation of HTML 4.01 in XML 1.0 and is intended to
be next generation of HTML.

§ Basically a stricter and cleaner version of HTML; e.g.:
– tags and attributes must be in lowercase;
– all XHTML elements must be have an end-tag;
– attribute values must be quoted and minimization is not

allowed;
– ID attribute replaces the name attribute;
– documents must conform to XML rules.

Simple Object Access Protocol (SOAP)

§ An XML-based messaging protocol that defines a set of rules
for structuring messages.

§ Protocol can be used for simple one-way messaging but also
useful for performing Remote Procedure Call (RPC) style
request-response dialogues.

§ Not tied to any particular operating system or programming
language nor any particular transport protocol, although
HTTP is popular.

§ Important advantage of SOAP is that most firewalls allow
HTTP to pass right through, facilitating point-to-point SOAP
data exchanges.

Simple Object Access Protocol (SOAP)

§ SOAP message is an XML document containing:
– A required Envelope element that identifies the XML document

as a SOAP message.
– An optional Header element that contains application specific

information such as authentication or payment information.
– A required Body Header element that contains call and

response information.
– An optional Fault element that provides information about

errors that occurred while processing message.

Web Services Description Language
(WSDL)

§ XML-based protocol for defining a Web service.

§ Specifies location of a service, operations service exposes,
SOAP messages involved, and communications protocol
used to talk to service.

§ Notation that a WSDL file uses to describe message formats
is typically based on XML Schema.

§ Published WSDL descriptions can be used to obtain
information about available Web services.

Web Services Description Language
(WSDL)

§ WSDL 2.0 describes a Web service in two parts: an abstract
part and a concrete part.

§ At abstract level, WSDL describes a Web service in terms of
the messages it sends and receives; messages are described
independent of a specific wire format using a type system,
typically XML Schema.

§ At concrete level, a binding specifies transport and wire
format details for one or more interfaces. An endpoint
associates a network address with a binding and a service
groups endpoints that implement a common interface.

WSDL Concepts

Universal Discovery, Description and Integration
(UDDI)

§ Defines SOAP-based Web service for locating WSDL-
formatted protocol descriptions of Web services.

§ Essentially describes online electronic registry that serves as
electronic Yellow Pages, providing information structure
where various businesses register themselves and services
they offer through their WSDL definitions.

§ Based on industry standards including HTTP, XML, XML
Schema, SOAP, and WSDL.

§ Two types of UDDI registries: public and private.

WSDL and UDDI

XML Schema

§ DTDs have number of limitations:
– it is written in a different (non-XML) syntax;
– it has no support for namespaces;
– it only offers extremely limited data typing.

§ XML Schema is more comprehensive method of defining
content model of an XML document.

§ Additional expressiveness will allow Web applications to
exchange XML data more robustly without relying on ad hoc
validation tools.

XML Schema

§ XML schema is the definition (both in terms of its
organization and its data types) of a specific XML structure.

§ XML Schema language specifies how each type of element
in schema is defined and the element’s data type.

§ Schema is an XML document, and so can be edited and
processed by same tools that read the XML it describes.

XML Schema – Simple Types

§ Elements that do not contain other elements or attributes
are of type simpleType.

<xsd:element name=“STAFFNO” type = “xsd:string”/>
<xsd:element name=“DOB” type = “xsd:date”/>
<xsd:element name=“SALARY” type = “xsd:decimal”/>

§ Attributes must be defined last:

<xsd:attribute name=“branchNo” type = “xsd:string”/>

XML Schema – Complex Types

§ Elements that contain other elements are of type
complexType.

§ List of children of complex type are described by sequence
element.

<xsd:element name = “STAFFLIST”>
<xsd:complexType>

<xsd:sequence>
<!-- children defined here -->

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Cardinality

§ Cardinality of an element can be represented using
attributes minOccurs and maxOccurs.

§ To represent an optional element, set minOccurs to 0; to
indicate there is no maximum number of occurrences, set
maxOccurs to “unbounded”.
<xsd:element name=“DOB” type=“xsd:date”

minOccurs = “0”/>
<xsd:element name=“NOK” type=“xsd:string”

minOccurs = “0” maxOccurs = “3”/>

References

§ Can use references to elements and attribute definitions.

<xsd:element name=“STAFFNO” type=“xsd:string”/>
….
<xsd:element ref = “STAFFNO”/>

§ If there are many references to STAFFNO, use of references
will place definition in one place and improve the
maintainability of the schema.

Defining New Types

§ Can also define new data types to create elements and
attributes.
<xsd:simpleType name = “STAFFNOTYPE”>

<xsd:restriction base = “xsd:string”>
<xsd:maxLength value = “5”/>

</xsd:restriction>
</xsd:simpleType>

§ New type has been defined as a restriction of string (to have
maximum length of 5 characters).

Groups

§ Can define both groups of elements and groups of
attributes. Group is not a data type but acts as a container
holding a set of elements or attributes.
<xsd:group name = “StaffType”>

<xsd:sequence>
<xsd:element name=“StaffNo” type=“StaffNoType”/>

<xsd:element name=“Position” type=“PositionType”/>
<xsd:element name=“DOB” type =“xsd:date”/>
<xsd:element name=“Salary” type=“xsd:decimal”/>

</xsd:sequence>
</xsd:group>

Constraints

§ XML Schema provides XPath-based features for specifying
uniqueness constraints and corresponding reference
constraints that will hold within a certain scope.

<xsd:unique name = “NAMEDOBUNIQUE”>
<xsd:selector xpath = “STAFF”/>
<xsd:field xpath = “NAME/LNAME”/>
<xsd:field xpath = “DOB”/>

</xsd:unique>

Key Constraints

§ Similar to uniqueness constraint except the value has to
be non-null. Also allows the key to be referenced.
<xsd:key name = “STAFFNOISKEY”>

<xsd:selector xpath = “STAFF”/>
<xsd:field xpath = “STAFFNO”/>

</xsd:key>

Resource Description Framework (RDF)
§ Even XML Schema does not provide the support for semantic

interoperability required.

§ For example, when two applications exchange information
using XML, both agree on use and intended meaning of the
document structure.

§ Must first build a model of the domain of interest, to clarify
what kind of data is to be sent from first application to
second.

§ However, as XML Schema just describes a grammar, there are
many different ways to encode a specific domain model into
an XML Schema, thereby losing the direct connection from
the domain model to the Schema.

Resource Description Framework (RDF)
§ Problem compounded if third application wishes to exchange

information with other two.

§ Not sufficient to map one XML Schema to another, since the
task is not to map one grammar to another grammar, but to
map objects and relations from one domain of interest to
another.

§ Three steps required:
– reengineer original domain models from XML Schema;
– define mappings between the objects in the domain models;
– define translation mechanisms for the XML documents, for

example using XSLT.

Resource Description Framework (RDF)
§ RDF is infrastructure that enables encoding, exchange, and

reuse of structured meta-data.

§ This infrastructure enables meta-data interoperability
through design of mechanisms that support common
conventions of semantics, syntax, and structure.

§ RDF does not stipulate semantics for each domain of
interest, but instead provides ability for these domains to
define meta-data elements as required.

§ RDF uses XML as a common syntax for exchange and
processing of meta-data.

RDF Data Model

§ Basic RDF data model consists of three objects:

Resource: anything that can have a URI; e.g., a Web page, a
number of Web pages, or a part of a Web page, such as an
XML element.
Property: a specific attribute used to describe a resource;
e.g., attribute Author may be used to describe who
produced a particular XML document.
Statement: consists of combination of a resource, a
property, and a value.

RDF Data Model

§ Components known as “subject”, “predicate”, and “object” of
an RDF statement.
§ Example statement:

“Author of http://www.simeuep.my/staff_list.xml is Ali
Muhammad”

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:s=“http://www. simeuep.my/schema/”>

<rdf:Description about=“http://www. simeuep.my/staff_list.xml”>
<s:Author> Ali Muhammad </s:Author>

</rdf:Description>
</rdf:RDF>

http://www.simeuep.my/staff_list.xml
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.simeuep.my/schema/
http://www.simeuep.my/staff_list.xml

RDF Schema

§ Specifies information about classes in a schema including
properties (attributes) and relationships between resources
(classes).

§ RDF Schema mechanism provides a basic type system for use
in RDF models, analogous to XML Schema.

§ Defines resources and properties such as rdfs:Class and
rdfs:subClassOf that are used in specifying application-specific
schemas.

§ Also provides a facility for specifying a small number of
constraints such as cardinality.

XML Query Languages

§ Data extraction, transformation, and integration are well-
understood database issues that rely on a query language.

§ SQL and OQL do not apply directly to XML because of the
irregularity of XML data.

§ However, XML data similar to Semi-structured data. There
are many Semi-structured query languages that can query
XML documents, including XML-QL, Unstructured data
Query Language (UnQL), and XML Query Language (XQL).

§ All have notion of a path expression for navigating nested
structure of XML.

Example XML-QL

Find surnames of staff who earn more than RM30,000.

WHERE <STAFF>
<SALARY> $S </SALARY>
<NAME><FNAME> $F </FNAME> <LNAME> $L
</LNAME></NAME>
</STAFF> IN “http://www.simeuep.my/staff.xml”
$S > 20000

CONSTRUCT <LNAME> $L </LNAME>

http://www.simeuep.my/staff.xml

XML Query Working Group

§ W3C formed an XML Query Working Group in 1999 to
produce a data model for XML documents, set of query
operators on this model, and query language based on query
operators.

§ Queries operate on single documents or fixed collections of
documents, and can select entire documents or subtrees of
documents that match conditions based on document
content/structure.

§ Queries can also construct new documents based on what
has been selected.

XML Query Working Group

§ Ultimately, collections of XML documents will be accessed like
databases.

§ Working Group has produced four documents:
– XML Query (XQuery) Requirements;
– XML XQuery 1.0 and XPath 2.0 Data Model;
– XML XQuery 1.0 and XPath 2.0 Formal Semantics;
– XQuery 1.0 – A Query Language for XML;
– XML XQuery 1.0 and XPath 2.0 Functions and Operators;
– XSLT 2.0 and XPath 1.0 Serialization.

XML Query Requirements

§ Specifies goals, usage scenarios, and requirements for
XQuery Data Model and query language. For example:
– language must be declarative and must be defined

independently of any protocols with which it is used;
– queries should be possible whether or not a schema exists;
– language must support both universal and existential quantifiers

on collections and it must support aggregation, sorting, nulls,
and be able to traverse inter- and intra-document references.

XQuery

§ XQuery derived from XML query language called Quilt,
which has borrowed features from XPath, XML-QL, SQL,
OQL, Lorel, XQL.

§ Like OQL, XQuery is a functional language in which a query
is represented as an expression.

§ XQuery supports several kinds of expression, which can be
nested (supporting notion of a subquery).

XQuery – Path Expressions

§ Uses syntax of XPath.

§ In XQuery, result of a path expression is ordered list of nodes,
including their descendant nodes, ordered according to their
position in original hierarchy, top-down, left-to-right order.

§ Result of path expression may contain duplicate values.

§ Each step in path expression represents movement through
document in particular direction, and each step can eliminate
nodes by applying one or more predicates.

XQuery – Path Expressions

§ Result of each step is list of nodes that serves as starting
point for next step.

§ Path expression can begin with an expression that identifies
a specific node, such as function doc(string), which returns
root node of named document.

§ Query can also contain path expression beginning with “/”
or “//”, which represents an implicit root node determined
by the environment in which query is executed.

XQuery – Path Expressions

§ Find staff number of first member of staff in our XML
document.

doc(“staff_list.xml”)/STAFFLIST/STAFF[1]//STAFFNO

§ Four steps:
– first opens staff_list.xml and returns its document node;
– second uses /STAFFLIST to select STAFFLIST element at top;
– third locates first STAFF element that is child of root

element;
– fourth finds STAFFNO elements occurring anywhere within

this STAFF element.

XQuery – Path Expressions

§ Knowing structure of document, could also express this as:

doc(“staff_list.xml”)//STAFF[1]/STAFFNO
doc(“staff_list.xml”)/STAFFLIST/STAFF[1]/STAFFNO

XQuery – Path Expressions

Find staff numbers of first two members of staff.

doc(“staff_list.xml”)/STAFFLIST/STAFF[1 TO 2]/STAFFNO

XQuery – Path Expressions

Find surnames of staff at branch B005.

doc(“staff_list.xml”)/STAFFLIST/
STAFF[@branchNo =“B005”]//LNAME

§ Five steps:
– first two as before;
– third uses /STAFF to select STAFF elements within STAFFLIST

element;
– fourth consists of predicate that restricts STAFF elements to

those with branchNo attribute = B005;
– fifth selects LNAME element(s) occurring anywhere within these

elements.

XQuery – FLWOR Expressions

§ FLWOR (“flower”) expression is constructed from FOR, LET, WHERE,
ORDER BY, RETURN clauses.

§ FLWOR expression starts with one or more FOR or LET clauses in
any order, followed by optional WHERE clause, optional ORDER BY
clause, and required RETURN clause.

§ FOR and LET clauses serve to bind values to one or more variables
using expressions (e.g., path expressions).

§ FOR used for iteration, associating each specified variable with
expression that returns list of nodes.

§ FOR clause can be thought of as iterating over nodes returned by its
respective expression.

XQuery – FLWOR Expressions

§ LET clause also binds one or more variables to one or more
expressions but without iteration, resulting in single binding
for each variable.

§ Optional WHERE clause specifies one or more conditions to
restrict tuples generated by FOR and LET.

§ RETURN clause evaluated once for each tuple in tuple stream
and results concatenated to form result.

§ ORDER BY clause, if specified, determines order of the tuple
stream which, in turn, determines order in which RETURN
clause is evaluated using variable bindings in the respective
tuples.

XQuery – FLWOR Expressions

XQuery – FLWOR Expressions

List staff with salary = RM30,000.

LET $SAL := 30000
RETURN doc(“staff_list.xml”)//STAFF[SALARY = $SAL]

§ Note, predicate seems to compare an element (SALARY)
with a value (15000). In fact, ‘=’ operator extracts typed
value of element resulting in a decimal value in this case,
which is then compared with 15000.

XQuery – FLWOR Expressions

§ ‘=’ operator is a general comparison operator. XQuery also
defines value comparison operators (‘eq’, ‘ne’, ‘lt’, ‘le’, ‘gt’,
‘ge’), which are used to compare two atomic values.

§ If either operand is a node, atomization is used to convert it to
an atomic value.

§ If we try to compare an atomic value to an expression that
returns multiple nodes, then a general comparison operator
returns true if any value satisfies predicate; however, value
comparison operator would raise an error.

XQuery – FLWOR Expressions

List staff at branch B005 with salary > RM15,000.

FOR $S IN doc(“staff_list.xml”)//STAFF
WHERE $S/SALARY > 15000 AND

$S/@branchNo = “B005”
RETURN $S/STAFFNO

XQuery – FLWOR Expressions

List all staff in descending order of staff number.

FOR $S IN doc(“staff_list.xml”)//STAFF
ORDER BY $S/STAFFNO DESCENDING”
RETURN $S/STAFFNO

XQuery – FLWOR Expressions

List each branch office and average salary at branch.

FOR $B IN
distinct-values(doc(“staff_list.xml”)//@branchNo))

LET $avgSalary := avg(doc(“staff_list.xml”)//
STAFF[@branchNo = $B]/SALARY)

RETURN
<BRANCH>

<BRANCHNO>{ $B/text() }</BRANCHNO>,
<AVGSALARY>$avgSalary</AVGSALARY>

</BRANCH>

XQuery – FLWOR Expressions

List branches that have more than 20 staff.

<LARGEBRANCHES>
FOR $B IN

distinct-values(doc(“staff_list.xml”)//@branchNo)
LET $S := doc(“staff_list.xml”)//STAFF/[@branchNo = $B]

WHERE count($S) > 20
RETURN

<BRANCHNO>{ $B/text() }</BRANCHNO>
</LARGEBRANCHES>

XQuery – FLWOR Expressions

List branches with at least one member of staff with salary >
RM15,000.

<BRANCHESWITHLARGESALARIES>
FOR $B IN

distinct-values(doc(“staff_list.xml”)//@branchNo)
LET $S := doc(“staff_list.xml”)//STAFF/[@branchNo = $B]
WHERE SOME $sal IN $S/SALARY

SATISFIES ($sal > 15000)
RETURN

<BRANCHNO>{ $B/text() }</BRANCHNO>
</ BRANCHESWITHLARGESALARIES >

XQuery – Joining Two Documents

List staff along with details of their next of kin.

FOR $S IN doc(“staff_list.xml”)//STAFF,
$NOK IN doc(“nok.xml”)//NOK

WHERE $S/STAFFNO = $NOK/STAFFNO
RETURN

<STAFFNO>{ $S, $NOK/NAME }</STAFFNO>

XQuery – Joining Two Documents

List all staff along with details of their next of kin.

FOR $S IN doc(“staff_list.xml”)//STAFF
RETURN

<STAFFNOK>
{ $S }
FOR $NOK IN doc(“nok.xml”)//NOK
WHERE $S/STAFFNO = $NOK/STAFFNO
RETURN $NOK/NAME

</STAFFNOK>

XQuery – Joining Two Documents

List each branch office and staff who work there.

<BRANCHLIST>
FOR $B IN

distinct-values(doc(“staff_list.xml”)//@branchNo)
ORDER BY $B
RETURN
<BRANCHNO> { $B/text() } {

FOR $S IN doc(“staff_list.xml”)//STAFF
WHERE $S/@branchNo = $B
ORDER BY $S/STAFFNO
RETURN $S/STAFFNO, $S/NAME, $S/POSITION, $S/SALARY }

</BRANCHNO>
</BRANCHLIST>

XQuery – User-Defined Function

Function to return staff at a given branch.

DEFINE FUNCTION staffAtBranch($bNo) AS element()* {
FOR $S IN doc(“staff_list.xml”)//STAFF
WHERE $S/@branchNo = $bNo
ORDER BY $S/STAFFNO
RETURN $S/STAFFNO, $S/NAME,

$S/POSITION, $S/SALARY
}
staffAtBranch($B)

XML Information Set (Infoset)
§ Abstract description of information available in well-formed

XML document that meets certain XML namespace
constraints.

§ XML Infoset is attempt to define set of terms that other XML
specifications can use to refer to the information items in a
well-formed (although not necessarily valid) XML document.

§ Does not attempt to define complete set of information, nor
does it represent minimal information that an XML processor
should return to an application.

§ It also does not mandate a specific interface or class of
interfaces (although Infoset presents information as tree).

XML Information Set (Infoset)
§ XML document’s information set consists of two or more

information items.

§ An information item is an abstract representation of a
component of an XML document such as an element,
attribute, or processing instruction.

§ Each information item has a set of associated properties. e.g.,
document information item properties include:
– [document element];
– [children];
– [notations]; [unparsed entities];
– [base URI], [character encoding scheme], [version], and

[standalone].

XQuery 1.0 and XPath 2.0 Data Model
§ Defines the information contained in the input to an XSLT or

XQuery Processor.

§ Also defines all permissable values of expressions in XSLT,
XQuery, and XPath.

§ Data Model is based on XML Infoset, with following new
features:
– support for XML Schema types;
– representation of collections of documents and of simple and

complex values.

XQuery 1.0 and XPath 2.0 Data Model
§ Decided to make XPath subset of XQuery.

§ XPath spec shows how to represent information in XML
Infoset as a tree structure containing seven kinds of nodes
(document, element, attribute, text, comment, namespace,
or processing instruction), with XPath operators defined in
terms of these seven nodes.

§ To retain these operators while using richer type system
provided by XML Schema, XQuery extended XPath data
model with additional information contained in PSVI.

XQuery 1.0 and XPath 2.0 Data Model
§ Data Model is node-labeled, tree-constructor, with notion of node

identity to simplify representation of reference values (such as IDREF,
XPointer, and URI values).

§ An instance of data model represents one or more complete documents
or document parts, each represented by its own tree of nodes.

§ Every value is ordered sequence of zero or more items, where an item
can be an atomic value or a node.

§ An atomic value has a type, either one of atomic types defined in XML
Schema or restriction of one of these types.

§ When a node is added to a sequence its identity remains same. Thus, a
node may occur in more than one sequence and a sequence may contain
duplicate items.

XQuery 1.0 and XPath 2.0 Data Model
§ Root node representing XML document is a document node and each

element in document is represented by an element node.

§ Attributes represented by attribute nodes and content by text nodes and
nested element nodes.

§ Primitive data in document is represented by text nodes, forming the
leaves of the node tree.

§ Element node may be connected to attribute nodes and text
nodes/nested element nodes.

§ Every node belongs to exactly one tree, and every tree has exactly one
root node.

§ Tree whose root node is document node is referred to as a document and
a tree whose root node is some other kind of node is referred to as a
fragment.

XQuery 1.0 and XPath 2.0 Data Model
§ Information about nodes obtained via accessor functions that

can operate on any node.

§ Accessor functions are analogous to an information item’s
named properties.

§ These functions are illustrative and intended to serve as
concise description of information that must be exposed by
Data Model.

§ Data Model also specifies a number of constructor functions
whose purpose is to illustrate how nodes are constructed.

ER Diagram Representing Main Components

XML Query Data Model

Instance of XML Query Data Model

XQuery Formal Semantics

§ ‘goal is to complement XPath/XQuery spec, by defining
meaning of expressions with mathematical rigor. A rigorous
formal semantics clarifies intended meaning of the English
specification, ensures that no corner cases are left out, and
provides reference for implementation’.

§ Provides implementers with a processing model and a
complete description of the language’s static and dynamic
semantics.

XQuery Formal Semantics – Main Phases
§ Parsing, ensures input expression is instance of language

defined by the grammar rules and then builds an internal
parse tree.

§ Normalization, converts expression into an XQuery Core
expression.

§ Static type analysis (optional), checks whether each (core)
expression is type safe and, if so, determines its static type. If
expression is not type-safe, type error is raised; otherwise,
parse tree built with each subexpression annotated with its
static type.

§ Dynamic evaluation, computes value of the expression from
parse tree. May result in a dynamic error, either a type error
(if static type analysis has done) or a non-type error.

XQuery Formal Semantics – Main Phases

XQuery Formal Semantics – Normalization

§ Takes full XQuery expression and transforms it into an
equivalent expression in the core XQuery.
§ Written as follows:

[Expr]Expr

==
CoreExpr

§ States that Expr is normalized to CoreExpr (Expr subscript
indicates an expression; other values possible; e.g. Axis).

XQuery Formal Semantics – Normalization
§ FLWOR expression covered by two sets of rules; first splits expression at

clause level then applies further normalization to each clause:

[(ForClause | LetClause | WhereClause | OrderByClause) FLWORExpr]Expr

==
[(ForClause | LetClause | WhereClause | OrderByClause)]FLWOR ([FLWORExpr]Expr)

[(ForClause | LetClause | WhereClause | OrderByClause) RETURN Expr]Expr

==
[(ForClause | LetClause | WhereClause | OrderByClause)]FLWOR ([Expr]Expr)

XQuery Formal Semantics – Normalization

§ Second set applies to FOR and LET clauses and transforms each
into series of nested clauses, each of which binds one variable.
For example, for the FOR clause we have:

[FOR varRef1 TypeDec1? PositionalVar1? IN Expr1, …,
varRefn TypeDecn? PositionalVarn? IN Exprn]FLWOR(Expr)

==
FOR varRef1 TypeDec1? PositionalVar1? IN [Expr1]Expr RETURN …

FOR varRefn TypeDecn? PositionalVarn? IN [Exprn]Expr RETURN Expr

XQuery Formal Semantics – Normalization

§ WHERE clause normalized to IF expression that returns an
empty sequence if condition is false and normalizes result:

[WHERE Expr1]FLWOR(Expr)
==

IF ([Expr1]Expr) THEN Expr ELSE ()

Normalization - Example

FOR $i IN $I, $j IN $J
LET $k := $i + $j
WHERE $k > 2
RETURN ($i, $j)

FOR $i IN $I RETURN
FOR $j in $J RETURN

LET $k := $i + $j RETURN
IF ($k > 2) THEN RETURN ($i, $j)
ELSE ()

XML and Databases

§ Need to handle XML that:
– may be strongly typed governed by XML Schema;
– may be strongly typed governed by another schema language,

such as a DTD;
– may be governed by multiple schemas or one schema may be

subject to frequent change;
– may be schema-less;
– may contain marked-up text with logical units of text (such as

sentences) that span multiple elements;
– has structure, ordering, and whitespace that may be significant;
– may be subject to update as well as queries based on context

and relevancy.

XML and Databases

§ Four general approaches to storing an XML document in RDB:
– store the XML as the value of some attribute within a tuple;
– store the XML in a shredded form across a number of attributes

and relations;
– store the XML in a schema independent form;
– store the XML in a parsed form; i.e., convert the XML to internal

format, such as an Infoset and store this representation.

Storing XML in an Attribute

§ In past the XML would have been stored in an attribute whose
data type was CLOB.
§ More recently, some systems have a new native XML data

type (e.g. XML or XMLType).
§ Raw XML stored in serialized form, which makes it efficient to

insert documents into database and retrieve them in their
original form.
§ Relatively easy to apply full-text indexing to documents for

contextual and relevance retrieval. However, question about
performance of general queries and indexing, which may
require parsing on-the-fly.
§ Also, updates usually require entire XML document to be

replaced with a new document.

Storing XML in Shredded Form

§ XML decomposed (shredded) into its constituent elements
and data distributed over number of attributes in one or more
relations.

§ Storing shredded documents may make it easier to index
values of some elements, provided these elements are placed
into their own attributes.

§ Also possible to add some additional data relating to
hierarchical nature of the XML, making it possible to
recompose original structure and ordering, and to allow the
XML to be updated.

§ With this approach also have to create an appropriate
database structure.

Schema-Independent Representation
§ Could use DOM to represent structure of XML data.

§ Since XML is a tree structure, each node may have only one
parent. The rootID attribute allows a query on a particular
node to be linked back to its document node.

§ While this is schema independent, recursive nature of
structure can cause performance problems when searching
for specific paths.

§ To overcome this, create denormalized index containing
combinations of path expressions and a link to node and
parent node.

XML and SQL

§ SQL:2003 has extensions to enable publication of XML
(commonly referred to as SQL/XML):
– new native XML data type, XML, which allows XML documents

to be treated as relational values in columns of tables, attributes
in user-defined types, variables, and parameters to functions;

– set of operators for the type;
– implicit set of mappings from relational data to XML.

§ Standard does not define any rules for the inverse process;
i.e., shredding XML data into an SQL form, with some minor
exceptions.

Creating Table using XML Type
CREATE TABLE XMLStaff (

docNo CHAR(4), docDate DATE, staffData XML,
PRIMARY KEY docNo);

INSERT INTO XMLStaff VALUES (‘D001’, DATE‘2011-04-01’,
XML(‘<STAFF branchNo = "B005">

<STAFFNO>SL21</STAFFNO>
<POSITION>Manager</POSITION>
<DOB>1979-07-07</DOB>
<SALARY>30000</SALARY> </STAFF>’));

SQL/XML Operators

§ XMLELEMENT, to generate an XML value with a single element as a child
of its root item. Element can have attributes specified via XMLATTRIBUTES
subclause.

§ XMLFOREST, to generate an XML value with a list of elements as children
of a root item.

§ XMLCONCAT, to concatenate a list of XML values.
§ XMLPARSE, to perform a non-validating parse of a character string to

produce an XML value.
§ XMLROOT, to create an XML value by modifying the properties of the root

item of another XML value.
§ XMLCOMMENT, to generate an XML comment.
§ XMLPI, to generate an XML processing instruction.

SQL/XML Functions

§ XMLSERIALIZE, to generate a character or binary string from
an XML value;
§ XMLAGG, an aggregate function, to generate a forest of

elements from a collection of elements.

Using XML Operators

List all staff with salary > RM20,000, as an XML element
containing name and branch number as an attribute.

SELECT staffNo, XMLELEMENT (NAME “STAFF”,
fName || ‘ ’ || lName,
XMLATTRIBUTES (branchNo AS

“branchNumber”)) AS “staffXMLCol”
FROM Staff
WHERE salary > 20000;

Using XML Operators

For each branch, list names of all staff with each one represented as an
XML element.

SELECT XMLELEMENT (NAME “BRANCH”,
XMLATTRIBUTES (branchNo AS “branchNumber”),
XMLAGG (

XMLELEMENT (NAME “STAFF”,
fName || ‘ ’ || lName)

ORDER BY fName || ‘ ’ || lName
)

) AS “branchXMLCol”
FROM Staff
GROUP BY branchNo;

SQL/XML Mapping Functions
§ SQL/XML also defines mapping from tables to XML

documents.

§ Mapping may take as its source an individual table, all tables
in a schema, or all tables in a catalog.

§ Standard does not specify syntax for the mapping; instead it is
provided for use by applications and as a reference for other
standards.

§ Mapping produces two XML documents: one that contains
mapped table data and other that contains an XML Schema
describing the first.

Mapping SQL Identifiers to XML Names
§ Number of issues had to be addressed to map SQL identifiers

to XML Names:
– range of characters that can be used within an SQL identifier

larger than range for an XML Name;
– SQL delimited identifiers (identifiers within double-quotes),

permit arbitrary characters to be used at any point in identifier;
– XML Names that begin with ‘XML’ are reserved;
– XML namespaces use ‘:’ to separate namespace prefix from

local component.

§ Resolved using escape notation that changes unacceptable
characters in XML Names into sequence of allowable
characters based on Unicode values (“_xHHHH_”).

Mapping SQL Data Types to XML Schema

§ SQL/XML maps each SQL data type to closest match in XML
Schema, in some cases using facets to restrict acceptable XML
values to achieve closest match.

§ For example:
– SMALLINT mapped to a restriction of xsd:integer with

minInclusive and maxInclusive facets set.
– CHAR mapped to restriction of xsd:string with facet length set.
– DECIMAL mapped to xsd:decimal with precision and scale set.

Mapping Tables to XML Documents
§ Create root element named after table with <row> element

for each row.

§ Each row contains a sequence of column elements, each
named after corresponding column.

§ Each column element contains a data value.

§ Names of table and column elements are generated using
fully escaped mapping from SQL identifiers to XML Names.

§ Must also specify how nulls are to be mapped, using ‘absent’
(column with null would be omitted) or ‘nil’.

Generating an XML Schema

§ Generated by creating globally-named XML Schema data types for
every type required to describe tables(s) being mapped.

§ Naming convention uses suffix containing length or precision/scale
to name of the base type (e.g. CHAR(10) would be CHAR_10).

§ Next, named XML Schema type is created for types of the rows in
table (name used is ‘RowType’ concatenated with catalog, schema,
and table name).

§ Named XML Schema type is created for type of the table itself
(name used is ‘TableType’ concatenated with catalog, schema, and
table name).

§ Finally, an element is created for table based on this new table
type.

Native XML Databases

§ Defines (logical) data model for an XML document (as
opposed to data in that document) and stores/retrieves
documents according to that model.

§ At a minimum, model must include elements, attributes,
PCDATA, and document order.

§ XML document must be unit of (logical) storage although not
restricted by any underlying physical storage model (so
traditional DBMSs not ruled out nor proprietary storage
formats such as indexed, compressed files).

Native XML Databases

§ Two types:
– text-based, which stores XML as text, e.g. as a file in file system

or as a CLOB in an RDBMS;
– model-based, which stores XML in some internal tree

representation, e.g., an Infoset, PSVI, or representation,
possibly with tags tokenized.

