Chap 2: Geometry of Complex Numbers

Ali H. M. Murid

Department of Mathematical Sciences,
Faculty of Science, Universiti Teknologi Malaysia,
81310 UTM Skudai, Malaysia
alihassan@utm.my
September 29, 2012

Chap 2: Geometry of Complex Numbers

Outline:

- Complex plane
- Polar form of complex numbers
- De Moivre's formula
- Roots of complex numbers

Geometry of Complex Numbers

The complex plane:

- A simple way of visualizing a complex number $z=x+i y$ is by regarding it to be a point with ordered pair (x, y) in the Cartesian xy-plane.
- The x-axis will be refered the real axis and the y-axis will be refered the imaginary axis. Such a plane is known as a complex plane or z-plane.
- The geometric representation of complex numbers is due to the German mathematician Karl Friedrich Gauss
(1777-1855), Jean Robert Argand (1768-1822, French), and Caspar Wessel (1745-1818, Norwegian).

Complex Conjugate of a Complex Number

- The complex conjugate of a complex number $z=x+i y$ is denoted by $\bar{z}=x-i y$.
- The point \bar{z} is the reflection of the point z with respect to the real axis.
- The distance OP gives the value of $|z|$, while the distance $O Q$ gives the value of $|\bar{z}|$.
- The distance between z and w is measured by $|z-w|$.

Polar Form of a Complex Number

- In calculus, the Cartesian coordinates (x, y) may be expressed in terms of the polar coordinates (r, θ).
- r measures the distance of the point from the origin
- θ measures the angle of the straight line, joining the point to the origin O, with respect to the real axis.

Relationship between (x, y) and (r, θ) :

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=y / x
$$

- Polar representation or polar form of the complex number $z=x+i y$:

$$
z=r \cos \theta+i r \sin \theta=r(\cos \theta+i \sin \theta) .
$$

- The term r is called the modulus of z.
- The term θ is called the argument or phase of z, and is denoted by $\arg z$.
- The value of $\arg z$ is however not unique.
- The value of $\arg z$ can be made unique by restricting it to the interval $-\pi<\theta \leq \pi$. This unique value is called the principal argument of z and is denoted by $\operatorname{Arg} z$.
- As for the case $z=0$, its modulus is zero but its argument is left undefined.

Multiplication in Polar Forms

Suppose we are given two complex numbers

$$
z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right), \quad z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)
$$

Then

$$
\begin{aligned}
z_{1} z_{2} & =r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
\frac{z_{1}}{z_{2}} & =\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|z_{1} z_{2}\right| & =r_{1} r_{2} \\
\left|z_{1} / z_{2}\right| & =r_{1} / r_{2} \\
\arg \left(z_{1} z_{2}\right) & =\theta_{1}+\theta_{2}=\arg \left(z_{1}\right)+\arg \left(z_{2}\right), \\
\arg \left(z_{1} / z_{2}\right) & =\theta_{1}-\theta_{2}=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
\end{aligned}
$$

De Moivre's formula

If $z=r(\cos \theta+i \sin \theta)$, n any integers, then

$$
z^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

If $r=1$, the equation becomes

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta=e^{i n \theta}
$$

known as De Moivre's formula, after the French mathematician Abraham De Moivre (1667-1754).

- De Moivre's formula is very usefull when converting a complex number raised to a big power into the form $a+i b$.
- De Moivre's formula is also helpful in deriving several trigonometric identities involving multiple angles:

$$
\cos (3 \theta)=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta, \quad \sin (3 \theta)=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta
$$

Roots of Complex Numbers

Definition

Suppose n is a positive integer. The nth root of a complex number z_{0}, written as $z_{0}^{1 / n}$, is all the complex numbers z satisfying

$$
z^{n}=z_{0}
$$

- The nth roots of a complex number z, denoted by $z^{1 / n}$, for n positive integers.
- If $z=r(\cos \theta+i \sin \theta)$, then, based on De Moivre's formula, it can be shown that

$$
z^{1 / n}=r^{1 / n}\left[\cos \left(\frac{\theta+2 k \pi}{n}\right)+i \sin \left(\frac{\theta+2 k \pi}{n}\right)\right]
$$

with $k=0,1,2, \ldots, n-1$.

Roots of Complex Numbers (Cont.)

More generally, if $z=r(\cos \theta+i \sin \theta), m= \pm 1, \pm 2, \ldots$, $n=1,2,3, \ldots$, and m and n have no common factors, then

$$
z^{m / n}=r^{m / n}\left[\cos \left(\frac{m \theta+2 k m \pi}{n}\right)+i \sin \left(\frac{m \theta+2 k m \pi}{n}\right)\right]
$$

with $k=0,1,2, \ldots, n-1$.

Sets of Complex Numbers

In calculus, functions of a real variable are usually defined over intervals. Functions of a complex variable however are defined over subsets of complex plane. This section presents some important sets of complex numbers, which will assists us in our study of functions of a complex variable.
The set $\operatorname{Im} z=0$ is the real axis, while the set $\operatorname{Re} z=0$ is the imaginary axis.

Definition (Half planes)

A set of complex numbers z such that $\operatorname{Im}(z)>0$ is called an upper-half plane. A set of complex numbers z such that $\operatorname{Im}(z)<0$ is called a lower-half plane. The right-half plane is described by $\operatorname{Re} z>0$, while the left-half plane is described by $\operatorname{Re} z<0$.

Circle, Disk

Definition (Circle, Disk)
The set of complex numbers z such that

$$
\left|z-z_{0}\right|=r
$$

is a circle centered at z_{0} with radius r. The set

$$
\left|z-z_{0}\right|<r
$$

is called a disk.
We defined a unit circle by $|z|=1$, and a unit disk by $|z|<1$.

Neighborhood, Interior points, Open sets

Definition (Neighborhood)

The set of all points z inside a circle of radius σ and centered at the point z_{0}, i.e., $\left|z-z_{0}\right|<\sigma$, is called a neighborhood or σ-neighborhoodof z_{0}.

Note that a σ-neighborhood of z_{0} does not include the points on the circle $\left|z-z_{0}\right|=\sigma$.

Definition (Interior points, Open sets)
A point z_{0} is called an interior point of a set D if there exists at least one neighborhood of z_{0} that is wholly contained in D. The collection of all interior points of D is called the interior of D. If every point of D is an interior point, then D is called open.

Exterior Points

Definition (Exterior points)

A point z_{0} is called an exterior point of a set D if there is a neighborhood of z_{0} that contains no points of D. The collection of all exterior points of D is called the exterior of D.

Boundary points, Closed sets

Definition (Boundary points, Closed sets)
A boundary point of a set D is a point which is neither an interior nor an exterior point of D. The set of all boundary points of D is called the boundary of D. A set is closed if it contains all its boundary points.

Thus a boundary point of a set D has the property that its neighborhood contains points in D as well as points not in D. For example, the set of points such that

$$
0<|z-2| \leq 1,
$$

has the set of points on the circle $|z-2|=1$ and the point $z=2$ as its boundaries. Such a set is also called a punctured disk or deleted neighborhood of $z=1$.

Bounded and Unbounded Sets

Definition (Bounded and unbounded sets)
A set is D called bounded if there is a constant R such that $|z|<R$ for every point z in D; otherwise, D is unbounded. A set that is both closed and bounded is sometimes called compact.

Connected sets

Definition (Connected sets)
A set S is called connected if every pair of points in D can be joined by a successive line segments (polygonal path) that lies entirely in D; otherwise, the set is not connected.

Roughly speaking, a connected set consists of a single piece. A connected set may contains countable number of holes. A connected set which has no holes is said to be simply connected; otherwise, it is multiply connected.

Domains, Regions

Definition (Domains, Regions)
An open connected set is called a domain, while a region is a domain together with some, none, or all of its boundary points.

Point at Infinity, i.e, $z=\infty$

- On the real number line, there are two directions that give rise to $\pm \infty$.
- In the complex number system, however, there is only one point of infinity $z=\infty$ which can be attained in several directions.
- No positive or negative signs are assigned to complex infinity.
- The argument of complex infinity is also left undefined.

