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Brief history of complex nhumbers

e Complex numbers were invented in the 16th century when
mathematicians were looking for solutions to the quadratic
and cubic equations.

e The simple quadratic equation
x2+1=0

has no real number solution.
e We may however write the solutions as

X =+v-1.

But v/—1 is not a real number.
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¢ In general, the ancient Greeks/Egyptians in the 3rd century
knew how to solve

5 —b+ Vb? —4ac
ax“+bx+c=0=x= o )

e Mainly interested with +ve roots. Rejected -ve numbers (no
physical interpretation).

e Historically, the understanding of v/—1 came not from the
quadratics but rather from the cubic equations.




Scipione del Ferro (1465-1526, Italian)

Discovered that the depressed cubic
X°+px =q,

has a solution given by the formula
v /qj pP_gl_a, @ P
\/ + 5= \/ + +

x2+6x=20, p=86,q9=20,

For example,

implies

x = V10 + V168 — {10+ VieB = 2.




Girolamo Cardano (1501-1576, Italian)

Discovered a method for solving the general cubic
3 2 _
x°+ax“+bx+c=0.

Substitution
x=y-af3=y’+py=aq
with ] 5 '
5 12 B B
p=>b 3z:z, q 574 +3.ab C.
What really puzzled Cardano:
The existence of /—ve occuring in Cardano’s formula that had

clearly real solutions.
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For example,
X2 —15x=4=x=4, x=-2+3.

All reals.
Cardano’s formula gives

x=€/2+x/W+\3/—2+\/T21.

This must be a real number.
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Rafael Bombelli (1526-1572, Italian, Cardano’s

follower)
Assume

V2+vV=121 = A+ BV—1 = (A+ BV=1) =2+ V=121,
V2 — V=121 =A—BV—1 = (A- BY—1)® =2 — v/—121
which implies A =2, B = 1. Therefore
V2+ V=12l = A+ BV—T=2+V-1,
V2 —v—121=A—BV/—1=2— -1,
which yields
x = 21 VA2 2 1 VA2 = 20V A) 42—V 1) = 4.
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e From Bombelli’'s work, it became clear that manipulations
of v/—1 using the ordinary rule of arithmetic leads to
perfectly correct results.

e In 1777 Leonhard Euler (1707—1783, Switzerland)
introduced the notation i to represent v/—1 with the basic
property i° = —1. He wrote a + ib to represent a complex
number.

e The symbol i is called an imaginary number because it
was shrouded with mysteries.
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e Caspar Wessel (1745—1818, Norway) in 1797 and Carl
Friedrich Gauss (1777—1855, German) in 1799 gave a
simple geometric representation for the complex number
a+ ib.

e In 1833, Sir William Rowan Hamilton (1805—1865, Ireland)
provided a formal algebraic presentation for the complex
number system.




Concept of complex nhumbers

Definition (Complex Number)

A number z is called a complex number if it can be written in
the form
zZ=x+1y,

where x and y are two real numbers and j is an imaginary unit
with the property i = —1.

The number x is called the real part of z, and is written
X=Rez

while the number y is called the imaginary part of z, and is
written
y=Imz.




Arithmetic operations on complex nhumbers

Equality of two complex numbers:
Suppose that we are given two complex numbers

z1 = X1 + iy, Zy = X + Iyo.

The complex number z; is equal to the complex number z, if
and only if
X1 = Xe, i =Y.
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Addition and subtraction of complex nhumbers:
Assume that we are given two complex numbers

zy = X1+ iy, Zo = Xo + IYo.
Adding z; and z, will yield another complex number:

Zi+2Z2=x1tiy1 + X2+ Y2
=Xy + X2+ iy1 + iy2
= X1+ X2+ i(y1 + y2).
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Subtraction of two complex numbers z; and z, will also yield
another complex number:

21— 2Zp =Xy +iy; — (X2 + iy)
=Xt +iy1—Xx2—1Iy2
=Xt —Xe+iy1—1iy2
=X1 — X2 +i(y1 — y2).

Thus in combining complex numbers, we combine the real
parts together and the imaginary parts together.




| ©UIM

Multiplication and division of complex humbers:
The repetitive multiplication of the imaginary unit is rather easy.
The imaginary unit i has the property

=1
This leads to
B =(P)i=(-1)i=—i
I'4:(I'2)2: 1 2:
"= ("= (-1)", n=1,2,3,...
2 = ()i = (-1)"i, n=0,1,2,...
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In general, the multiplication of two complex numbers obeys the
same rule as multiplying two real numbers a + b with ¢ + d:

(a+ b)(c+d)=ac+ ad + bc + bd.

Any occurence of i is replaced by —1. Thus if we are given two
complex numbers

Zi =Xy +iy; and Zo = Xo + iyo,
then,

2125 = (X1 + i) (X2 + iy2) = X1 X2 + X1z + iy1 X2 + Py1 o
= X1 X2 + iX1 Yo + iy1 X0 — 1Yo = X1 X2 — Y1Yo + (X1 Y2 + Xa)1)
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For the evaluation of the division involving two complex
numbers z; and z, i.e.,

zy Xy + iy
ST 4 20, 1
% ot 2 # (1)

we proceed as follows:

Z1 X+ iy - (X1 + iy1) (X2 — iy2)

Zo X+l (X +iy2)(Xe—iy2)

_ XiX2 + iy +i(Xeyr — X))
- X5+ 3

_XiXo+ V1Yo | Xoy1 — Xqi)e
X3+ yE X5+ 3
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Conjugate and absolute value of complex humbers:
Definition (Complex Conjugate)

The complex conjugate of the complex number z = x + iy,
denoted by Z, is given by

Z=x-1y.

In general, from the definition above, Z = z if and only if z is a
real number, and if z = x + iy, we have

Z+z zZ—2

2’ 2i
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Further results on complex conjugation are listed below:

Z=1z
Z1+22=21+22
Zy1—22=21— 22

2120 =21 22

Z4 Zy

— | = = V4 0
(Zz) =’ (z2 #0)
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Definition (Absolute Value or Modulus)

The absolute value or modulus of a complex number
z = X + iy, denoted by |z|, is a real number given by

|z| = \/x% + y2.

If z= x + iy, it is readily observed that
7Z = (x + iy)(x — iy) = x? + y2.

From the definition above, |z|?> = x? 4 y2. Hence the above
equation becomes
7z = |z|%.
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Further properties of complex numbers related to modulus are
listed below:

1z| = |2

|zl =0 iff z=0
|2122| = |21]| 22|
2| _ ||

=_—, if 2o #0.
z| |z 27
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Inequalities:
It is impossible to arrange the complex numbers either in
decreasing or increasing order like the real numbers. Listed
below are some inequalities with respect to complex numbers:
(@) —|z] <Re(z) <|z|
(b) —|z] <Im(z) <|z|
(©) [z1 + 22| < |z1] + | 2]
d) |z1 +2z2+ -+ 2| < |Z49] + |22] + - + | Zn)
) |z1] = |z2| < |21 — 22|
(f) |1z1 — 22| > [|z1] — | 22|
(Q) (w121 + Wozp + -+ + Wpzp|? <

(w2 + [wol? + -+ [wa?) (|21 P + [22]? + - - + |zn[?)
Inequality (c) is known as the triangle inequality, while
inequality (g) is called the Cauchy’s inequality.




