Chap 1: Complex Numbers

Ali H. M. Murid

Department of Mathematical Sciences,
Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
alihassan@utm.my
September 29, 2012

Chap 1: Complex Numbers

Outline:

- Brief History of Complex Numbers
- Arithmetic operations on complex numbers
- Conjugate and absolute value of complex numbers
- Inequalities
- Complex plane
- Polar form of complex numbers
- De Moivre's formula
- Roots of complex numbers

Brief history of complex numbers

- Complex numbers were invented in the 16 th century when mathematicians were looking for solutions to the quadratic and cubic equations.
- The simple quadratic equation

$$
x^{2}+1=0
$$

has no real number solution.

- We may however write the solutions as

$$
x= \pm \sqrt{-1}
$$

But $\sqrt{-1}$ is not a real number.

- In general, the ancient Greeks/Egyptians in the 3rd century knew how to solve

$$
a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Mainly interested with +ve roots. Rejected -ve numbers (no physical interpretation).
- Historically, the understanding of $\sqrt{-1}$ came not from the quadratics but rather from the cubic equations.

Scipione del Ferro (1465-1526, Italian)

Discovered that the depressed cubic

$$
x^{3}+p x=q
$$

has a solution given by the formula

$$
x=\sqrt[3]{\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}-\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

For example,

$$
x^{3}+6 x=20, \quad p=6, q=20
$$

implies

$$
x=\sqrt[3]{10+\sqrt{168}}-\sqrt[3]{-10+\sqrt{168}}=2
$$

Girolamo Cardano (1501-1576, Italian)

Discovered a method for solving the general cubic

$$
x^{3}+a x^{2}+b x+c=0
$$

Substitution

$$
x=y-a / 3 \Rightarrow y^{3}+p y=q
$$

with

$$
p=b-\frac{1}{3} a^{2}, \quad q=-\frac{2}{27} a^{3}+\frac{1}{3} a b-c .
$$

What really puzzled Cardano:
The existence of $\sqrt{-\mathrm{ve}}$ occuring in Cardano's formula that had clearly real solutions.

For example,

$$
x^{3}-15 x=4 \Rightarrow x=4, \quad x=-2 \pm \sqrt{3}
$$

All reals.
Cardano's formula gives

$$
x=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{-2+\sqrt{-121}}
$$

This must be a real number.

Rafael Bombelli (1526-1572, Italian, Cardano's follower)

Assume

$$
\begin{aligned}
& \sqrt[3]{2+\sqrt{-121}}=A+B \sqrt{-1} \Rightarrow(A+B \sqrt{-1})^{3}=2+\sqrt{-121} \\
& \sqrt[3]{2-\sqrt{-121}}=A-B \sqrt{-1} \Rightarrow(A-B \sqrt{-1})^{3}=2-\sqrt{-121}
\end{aligned}
$$

which implies $A=2, B=1$. Therefore

$$
\begin{aligned}
& \sqrt[3]{2+\sqrt{-121}}=A+B \sqrt{-1}=2+\sqrt{-1} \\
& \sqrt[3]{2-\sqrt{-121}}=A-B \sqrt{-1}=2-\sqrt{-1}
\end{aligned}
$$

which yields

$$
x=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{-2+\sqrt{-121}}=(2+\sqrt{-1})+(2-\sqrt{-1})=4
$$

- From Bombelli's work, it became clear that manipulations of $\sqrt{-1}$ using the ordinary rule of arithmetic leads to perfectly correct results.
- In 1777 Leonhard Euler (1707-1783, Switzerland) introduced the notation i to represent $\sqrt{-1}$ with the basic property $i^{2}=-1$. He wrote $a+i b$ to represent a complex number.
- The symbol i is called an imaginary number because it was shrouded with mysteries.
- Caspar Wessel (1745-1818, Norway) in 1797 and Carl Friedrich Gauss (1777-1855, German) in 1799 gave a simple geometric representation for the complex number $a+i b$.
- In 1833, Sir William Rowan Hamilton (1805-1865, Ireland) provided a formal algebraic presentation for the complex number system.

Concept of complex numbers

Definition (Complex Number)
A number z is called a complex number if it can be written in the form

$$
z=x+i y
$$

where x and y are two real numbers and i is an imaginary unit with the property $i^{2}=-1$.

The number x is called the real part of z, and is written

$$
x=\operatorname{Re} z
$$

while the number y is called the imaginary part of z, and is written

$$
y=\operatorname{Im} z
$$

Arithmetic operations on complex numbers

Equality of two complex numbers:

Suppose that we are given two complex numbers

$$
z_{1}=x_{1}+i y_{1}, \quad z_{2}=x_{2}+i y_{2}
$$

The complex number z_{1} is equal to the complex number z_{2} if and only if

$$
x_{1}=x_{2}, \quad y_{1}=y_{2}
$$

Addition and subtraction of complex numbers:
Assume that we are given two complex numbers

$$
z_{1}=x_{1}+i y_{1}, \quad z_{2}=x_{2}+i y_{2} .
$$

Adding z_{1} and z_{2} will yield another complex number:

$$
\begin{aligned}
z_{1}+z_{2} & =x_{1}+i y_{1}+x_{2}+i y_{2} \\
& =x_{1}+x_{2}+i y_{1}+i y_{2} \\
& =x_{1}+x_{2}+i\left(y_{1}+y_{2}\right)
\end{aligned}
$$

Subtraction of two complex numbers z_{1} and z_{2} will also yield another complex number:

$$
\begin{aligned}
z_{1}-z_{2} & =x_{1}+i y_{1}-\left(x_{2}+i y_{2}\right) \\
& =x_{1}+i y_{1}-x_{2}-i y_{2} \\
& =x_{1}-x_{2}+i y_{1}-i y_{2} \\
& =x_{1}-x_{2}+i\left(y_{1}-y_{2}\right)
\end{aligned}
$$

Thus in combining complex numbers, we combine the real parts together and the imaginary parts together.

Multiplication and division of complex numbers:
The repetitive multiplication of the imaginary unit is rather easy. The imaginary unit i has the property

$$
i^{2}=-1 .
$$

This leads to

$$
\begin{aligned}
i^{3} & =\left(i^{2}\right) i=(-1) i=-i \\
i^{4} & =\left(i^{2}\right)^{2}=(-1)^{2}=1 \\
i^{2 n} & =\left(i^{2}\right)^{n}=(-1)^{n}, \quad n=1,2,3, \ldots \\
i^{2 n+1} & =\left(i^{2}\right)^{n} i=(-1)^{n} i, \quad n=0,1,2, \ldots
\end{aligned}
$$

In general, the multiplication of two complex numbers obeys the same rule as multiplying two real numbers $a+b$ with $c+d$:

$$
(a+b)(c+d)=a c+a d+b c+b d .
$$

Any occurence of i^{2} is replaced by -1 . Thus if we are given two complex numbers

$$
z_{1}=x_{1}+i y_{1} \quad \text { and } \quad z_{2}=x_{2}+i y_{2},
$$

then,

$$
\begin{aligned}
z_{1} z_{2} & =\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}+i^{2} y_{1} y_{2} \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2}=x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
\end{aligned}
$$

For the evaluation of the division involving two complex numbers z_{1} and z_{2}, i.e.,

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}, \quad z_{2} \neq 0, \tag{1}
\end{equation*}
$$

we proceed as follows:

$$
\begin{aligned}
\frac{z_{1}}{z_{2}}=\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}} & =\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{\left(x_{2}+i y_{2}\right)\left(x_{2}-i y_{2}\right)} \\
& =\frac{x_{1} x_{2}+y_{1} y_{2}+i\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}} \\
& =\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}
\end{aligned}
$$

Conjugate and absolute value of complex numbers:
Definition (Complex Conjugate)
The complex conjugate of the complex number $z=x+i y$, denoted by \bar{z}, is given by

$$
\bar{z}=x-i y .
$$

In general, from the definition above, $\bar{z}=z$ if and only if z is a real number, and if $z=x+i y$, we have

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i} .
$$

Further results on complex conjugation are listed below:

$$
\begin{aligned}
& \overline{\bar{z}}=z \\
& \overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}} \\
& \overline{z_{1}-z_{2}}=\overline{z_{1}}-\overline{z_{2}} \\
& \overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}} \\
& \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\overline{z_{1}} \\
& \overline{z_{2}}
\end{aligned} \quad\left(z_{2} \neq 0\right),
$$

Definition (Absolute Value or Modulus)

The absolute value or modulus of a complex number $z=x+i y$, denoted by $|z|$, is a real number given by

$$
|z|=\sqrt{x^{2}+y^{2}} .
$$

If $z=x+i y$, it is readily observed that

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2} .
$$

From the definition above, $|z|^{2}=x^{2}+y^{2}$. Hence the above equation becomes

$$
z \bar{z}=|z|^{2} .
$$

Further properties of complex numbers related to modulus are listed below:

$$
\begin{aligned}
|\bar{z}| & =|z| \\
|z| & =0 \quad \text { iff } \quad z=0 \\
\left|z_{1} z_{2}\right| & =\left|z_{1}\right|\left|z_{2}\right| \\
\left|\frac{z_{1}}{z_{2}}\right| & =\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, \quad \text { if } \quad z_{2} \neq 0
\end{aligned}
$$

Inequalities:

It is impossible to arrange the complex numbers either in decreasing or increasing order like the real numbers. Listed below are some inequalities with respect to complex numbers:
(a) $-|z| \leq \operatorname{Re}(z) \leq|z|$
(b) $-|z| \leq \operatorname{Im}(z) \leq|z|$
(c) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(d) $\left|z_{1}+z_{2}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{n}\right|$
(e) $\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right|$
(f) $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
(g) $\left|w_{1} z_{1}+w_{2} z_{2}+\cdots+w_{n} z_{n}\right|^{2} \leq$ $\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}+\cdots+\left|w_{n}\right|^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)$
Inequality (c) is known as the triangle inequality, while inequality (g) is called the Cauchy's inequality.

