SGG 4653 Advance Database System

Data Warehouse

Inspiring Creative and Innovative Minds

ocw.utm.my

Contents

- Objectives of this topic:
 - To understand data warehouse
 - To know the architecture of data warehouse
 - To understand different schemas of data warehouse
- Contents of this topic:
 - Data Warehouse
 - Data Warehouse Architecture
 - Data Warehouse Life Cycle

What is Data Warehouse?

 "A data warehouse is a <u>subject-oriented, integrated, time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon

- Data warehousing:
 - The process of constructing and using data warehouses

What is Data Warehouse?

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.

What is a data warehouse?

- A database filled with large volumes of cross-indexed historical business information that users can access with various query tools.
- The warehouse usually resides on its own server and is separate from the transaction-processing or "run-the-business" systems.

What is a data warehouse?

- It brings all the various sets of data together
 - Financial data
 - Personnel data
 - Building infrastructure data
 - Student demographic information
 - Student program information
 - Student achievement information

 Example: Center for Educational Performance and Information's Michigan Education (CEPI) Information System.

(80% of work is data cleansing.)

Warehouse Scenario

Data Warehouse—1) Subject-Oriented

- Organized around major subjects, such as <u>customer, product, sales</u>.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

Data Warehouse— 2) Integrated

- <u>Constructed by integrating multiple</u>, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Integrated (cont'..)

- The Storage Managed by
 - <u>Relational databases</u>
 - like those from Oracle Corp. or Informix Software Inc.
 - Specialized hardware
 - symmetric multiprocessor (SMP)
 - or massively parallel processor (MPP) machines
- The majority of warehouse storage today is being managed by <u>relational</u> <u>databases running on Unix platforms</u>.
- Oracle, Sybase Inc., IBM Corp. and Informix control 65 percent of the warehouse storage market. *Meta Group Inc. (1996)*

Data Warehouse— 3) Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
 - Operational database: current value data.
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)

- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element".

Data Warehouse— 4) Non-Volatile

- <u>A physically separate store of data transformed from the</u> <u>operational environment</u>.
- <u>Operational update of data does not occur in the data</u> <u>warehouse</u> environment.
 - <u>Does not require transaction processing, recovery,</u>
 <u>and concurrency control mechanisms</u>
 - Requires only two operations in data accessing:
 - *initial loading of data* and *access of data*.

Three Data Warehouse Models

• Enterprise warehouse

- collects all of the information about subjects spanning the entire organization
- Data Mart
 - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart
- Virtual arehouse
 - A set of views over operational databases
 - Only some of the possible summary views may be materialized

Data Warehouse Development: A Recommended Approach

Multi-Tiered Architecture

Data Warehousing & Business Intelligence Architecture

ETL – Extraction, Transformation and Load

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: <u>dimensions & measures</u>
 - <u>Star shema</u>: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share
 dimension tables, viewed as a collection of stars,
 therefore called galaxy schema or fact constellation

The Design: Multidimensional

The Design: Dimensions

ACCOUNT_KEY
ACCOUNT_CODE
ACCOUNT_DESC
ACCOUNT_TYPE_CODE
ACCOUNT_TYPE_DESC
BUDGET_GROUP_CODE
BUDGET_GROUP_DESC

GRANT_KEY
GRANT_CODE
GRANT_LONG_NAME
GRANT_SHORT_NAME
AGENCY_ID
AGENCY_NAME
GRANT_TYPE

TIME_KEY CALENDAR_PERIOD CALENDAR_QUARTER CALENDAR_DAY CALENDAR_MONTH CALENDAR_YEAR

ORG_KEY
ORGANIZATION_CODE
ORGANIZATION_DESC
EXECUTIVE_CODE
EXECUTIVE_DESC
SR_MANAGEMENT_CODE
SR_MANAGEMENT_DESC
DEPARTMENT_CODE
DEPARTMENT_DESC

The Design: Facts

ACCOUNT_KEY
ACCOUNT_CODE
ACCOUNT_DESC
ACCOUNT_TYPE_CODE
ACCOUNT_TYPE_DESC
BUDGET_GROUP_CODE
BUDGET_GROUP_DESC

GRANT_KEY

GRANT_CODE GRANT_LONG_NAME

GRANT_SHORT_NAME

AGENCY_ID

AGENCY_NAME

GRANT TYPE

ACCOUNT_KEY TIME_KEY ORG_KEY FUND_KEY GRANT_KEY AMOUNT ENCUMBERED BALANCE

TIME_KEY CALENDAR_PERIOD CALENDAR_QUARTER CALENDAR_DAY CALENDAR_MONTH CALENDAR_YEAR

ORG_KEY

ORGANIZATION_CODE ORGANIZATION_DESC EXECUTIVE_CODE EXECUTIVE_DESC SR_MANAGEMENT_CODE SR_MANAGEMENT_DESC DEPARTMENT_CODE DEPARTMENT_DESC

The Design: Star Schema

ACCOUNT KEY	
ACCOUNT CODE	
ACCOUNT TYPE CODE	
ACCOUNT TYPE DESC	
BUDGET GROUP CODE	ACCOUNT KEY
BUDGET GROUP DESC	TIME KEY
	ORG KEY
	FUND_KEY
	GRANT_KEY
GRANT KEY	
GRANT CODE	ENCUMBERED
GRANT LONG NAME	BALANCE
GRANT SHORT NAME	
AGENCY ID	_

AGENCY NAME

GRANT TYPE

TIME_KEY CALENDAR_PERIOD CALENDAR_QUARTER CALENDAR_DAY CALENDAR_MONTH CALENDAR_YEAR

ORG_KEY

ORGANIZATION_CODE ORGANIZATION_DESC EXECUTIVE_CODE EXECUTIVE_DESC SR_MANAGEMENT_CODE SR_MANAGEMENT_DESC DEPARTMENT_CODE DEPARTMENT_DESC

Example: Facts & Dimensions

Another Example of Star Schema (cont'..)

Example of Student database

Example of Snowflake Schema

Example of Fact Constellation

Example Star Schema

Star Schema Viewed with Data

Conclusions

- A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process.
- A multi-dimensional model of a data warehouse
 - Star schema, snowflake schema, fact constellations
 - A data cube consists of dimensions & measures
- A data mart is a specialized system that brings together the data needed for a department or related applications.

SGG 4653 Advance Database System

Data Warehouse (Schema)

Inspiring Creative and Innovative Minds

ocw.utm.my

Contents

- Objectives of this topic:
 - To know and be able to define schema for a data warehouse
 - To understand multi-dimensional view of data in data warehousing
- Contents of this topic:
 - Data Mining Query Language, DMQL
 - Defining a Star Schema in DMQL
 - Defining a Snowflake Schema in DMQL
 - Defining a Fact Constellation Schema in DMQL
 - From Tables and Spreadsheets to Data Cubes

A Data Mining Query Language, DMQL: Language Primitives

• Cube Definition (Fact Table)

define cube <cube_name> [<dimension_list>]: <measure_list>

• Dimension Definition (Dimension Table)

define dimension <dimension_name> as
(<attribute_or_subdimension_list>)

- Special Case (Shared Dimension Tables)
 - First time as "cube definition"
 - define dimension <dimension_name> as
 <dimension_name_first_time> in cube <cube_name_first_time>

Example of Star Schema

Defining a Star Schema in DMQL

define cube sales_star [time, item, branch, location]:
 dollars_sold = sum(sales_in_dollars), avg_sales =
 avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, quarter, year)

define dimension item as (item_key, item_name, brand, type, supplier_type)

define dimension branch as (branch_key, branch_name, branch_type)

Example of Snowflake Schema

Defining a Snowflake Schema in DMQL

define cube sales_snowflake [time, item, branch, location]:
 dollars_sold = sum(sales_in_dollars), avg_sales =
 avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, quarter,
 year)

define dimension item as (item_key, item_name, brand, type, supplier(supplier_key, supplier_type))

define dimension branch as (branch_key, branch_name, branch_type)
Example of Fact Constellation

Defining a Fact Constellation in DMQL

define cube sales [time, item, branch, location]: dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*) define dimension time as (time_key, day, day_of_week, month, quarter, year) define dimension item as (item_key, item_name, brand, type, supplier_type) define dimension branch as (branch_key, branch_name, branch_type) define dimension location as (location_key, street, city, province or state, country) define cube shipping [time, item, shipper, from_location, to_location]: dollar_cost = sum(cost_in_dollars), unit_shipped = count(*) define dimension time as time in cube sales define dimension item as item in cube sales define dimension shipper as (shipper_key, shipper_name, location as location in cube sales, shipper_type) define dimension from_location as location in cube sales define dimension to location as location in cube sales

Creating a Database

- Using CREATE DATABASE Options
 - SIZE
 - MAXSIZE
 - FILEGROWTH
- Setting Database Options
 - Read-only: No Locking
 - Trunc. log on chkpt.: No Serious Recovery
 - SELECT INTO/Bulkcopy : No Logging

Implementing of a Star Schema (example)

Implementing of a Star Schema (example)

<u>Creating Tables</u>

CREATE table sales_fact_1997 (product_id int not null, customer_id int not null, store_id int not null, time_id int not null, store_sales float not null, store_cost float not null, unit_sales real not null)

CREATE table Customer (customer_id int not null, country char(50) not null, state_province char(50) not null, city char(50) not null, Iname char(100) not null,

primary key (customer_id))

Dimension Tables

CREATE table Product (product_id int not null, product_class_id int not null, product_family char(50) not null, product_department char(50) not null, product_category char(50) not null, product_subcategory char(50) not null, brand_name char(255) not null, product_name char(255) not null,

primary key (product_id))

CREATE table Store (store_id int not null, store_country char(50) not null, store_state char(50) not null, store_city char(50) not null,

primary key (store_id))

CREATE table Time (time_id int not null, the_month char(15) not null, quater char(2) not null, the_year int not null,

primary key (time_id))

Implementing of a Star Schema (example)

- Define FOREIGN KEY Constraints
 - ALTER TABLE sales_fact_1997 ADD foreign key (customer_id) references Customer
 - ALTER TABLE sales_fact_1997
 ADD foreign key (product_id) references Product
 - ALTER TABLE sales_fact_1997
 ADD foreign key (time_id) references Time
 - ALTER TABLE sales_fact_1997
 ADD foreign key (store_id) references store

create index fact
on sales_fact_1997 (product_id, customer_id, store_id, time_id)

Measures: Three Categories

 <u>distributive</u>: if the result derived by applying the function to *n* aggregate values is the same as that derived by applying the function on all the data without partitioning.

E.g., count(), sum(), min(), max().

• <u>algebraic</u>: if it can be computed by an algebraic function with *M* arguments (where *M* is a bounded integer), each of which is obtained by applying a distributive aggregate function.

E.g., avg(), min_N(), standard_deviation().

• <u>holistic</u>: if there is no constant bound on the storage size needed to describe a subaggregate.

E.g., median(), mode(), rank().

From Tables and Spreadsheets to Data Cubes

- <u>A data warehouse is based on a multidimensional data model which</u> views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

Cube: A Lattice of Cuboids

A Concept Hierarchy: Dimension (location)

Multidimensional Data

• Sales volume as a function of product, month, and region

Cube

Fact table view:

Multi-dimensional cube:

sale	prodld	storeld	amt
	p1	c1	12
	p2	c1	11
	p1	c3	50
	p2	c2	8

		c1	c2	c3
•	p1	12		50
	p2	11	8	

dimensions = 2

3-D Cube

Fact table view:

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

Multi-dimensional cube:

dimensions = 3

Conclusions

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube