SGG 4653 Advance Database System

Data Mining (Classification)

Inspiring Creative and Innovative Minds

ocw.utm.my

Contents

- Objective of this topic:
 - To extend understanding of classification technigue
 - To understand classification technique based on k-Nearest Neighbour
- Contents of this topic:
 - K-Nearest Neighbor Classifiers

K-Nearest Neighbor Classifiers

- Learning by analogy:
- Tell me who your friends are and I'll tell you who you are
- A <u>new example</u> is assigned to the most common class among the (K) examples that are most similar to it.

K-Nearest Neighbor Algorithm

- To determine the class of a new example E:
 - Calculate the distance between E and all examples in the training set
 - Select K-nearest examples to E in the training set
 - Assign E to the most common class among its K-nearest neighbors

Distance Between Neighbors

• Each example is represented with a set of numerical attributes

- "<u>Closeness</u>" is defined in terms of the <u>Euclidean distance</u> between two examples.
 - The <u>Euclidean distance</u> between X=(x₁, x₂, x₃,...x_n) and Y =(y₁,y₂, y₃,...y_n) is defined as:

$$D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

– Distance (John, Rachel)=sqrt [(35-41)²+(95K-215K)² +(3-2)²]

K-Nearest Neighbor: Instance Based Learning

- No model is built: Store all training examples
- Any processing is delayed until a new instance must be classified.

Example : 3-Nearest Neighbors

Customer	Age	Income	No. credit cards	Response
John 🙀	35	35K	3	Νο
Rachel	22	50K	2	Yes
Hannah	63	200K	1	Νο
Tom	59	170K	1	Νο
Nellie	25	40K	4	Yes
David	37	50K	2	?

Example: Distance from David

Customer	Age	Income (K)	No. cards	Response	Distance from David
John	35	35	3	Νο	sqrt [(35-37) ² +(35-50) ² +(3- 2) ²]=15.16
Rachel	22	50	2	Yes	sqrt [(22-37) ² +(50-50) ² +(2- 2) ²]=15
Hannah	63	200	1	No	sqrt [(63-37) ² +(200-50) ² +(1-2) ²]=152.23
Tom	59	170	1	Νο	sqrt [(59-37) ² +(170-50) ² +(1-2) ²]=122
Nellie	25	40	4	Yes	sqrt [(25-37) ² +(40-50) ² +(4- 2) ²]=15.74
David	37	50	2	Yes	

K-Nearest Neighbor Classifier

- Strengths
 - Simple to implement and use
 - Comprehensible easy to explain prediction
 - Robust to noisy data by averaging k-nearest neighbors.
 - Some appealing applications
- Weaknesses
 - Need a lot of space to store all examples.
 - Takes more time to classify a new example than with a model (need to calculate and compare distance from new example to all other examples).

K-Nearest Neighbor Classifier

Strengths and Weaknesses K-Nearest Neighbor Classifier

John: Age=35 Income=95K No. of credit cards=3

Rachel: Age=41 Income=215K No. of credit cards=2

Distance (John, Rachel) = sqrt $[(35-45)^2 + (95,000-215,000)^2 + (3-2)^2]$

• Distance between neighbors could be <u>dominated</u> by some attributes with relatively large numbers (e.g., income in our example). Important to normalize some features (e.g., map numbers to numbers between 0-1)

Example: Income Highest income = 500K Davis's income is normalized to 95/500, Rachel income is normalized to 215/500, etc.)

Strengths and Weaknesses K-Nearest Neighbor Classifier

Normalization of Variables

Customer	Age	Income (K)	No. cards	Response
John	55/63= 0.55	35/200= 0.175	³ ⁄4= 0.75	Νο
Rachel	22/63=0. 34	50/200= 0.25	2/4= 0.5	Yes
Hannah	63/63= 1	200/200=1	¼= 0.25	Νο
Tom	59/63= 0.93	170/200=0.8 5	¼= 0.25	Νο
Nellie	25/63= 0.39	40/200= 0.2	4/4= 1	Yes
David	37/63= 0.58	50/200= 0.25	2/4= 0.5	Yes

Strengths and Weaknesses K-Nearest Neighbor Classifier

• Distance works naturally with numerical attributes

 $D(Rachel&Johm) = sqrt [(35-37)^2 + (35-50)^2 + (3-2)^2] = 15.16$

What if we have nominal attributes?	Customer	Married	Income (K)	No. cards	Response
Example: married	John	Yes	35	3	No
	Rachel	No	50	2	Yes
	Hannah	No	200	1	No
	Tom	Yes	170	1	No
	Nellie	No	40	4	Yes
	David	Yes	50	2	

Issues regarding classification (1): Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Issues regarding classification (2): Evaluating Classification Methods

- Predictive accuracy
- Speed and scalability
 - time to construct the model
 - time to use the model
- Robustness
 - handling noise and missing values
- Scalability
 - efficiency in disk-resident databases
- Interpretability:
 - understanding and insight provided by the model
- Goodness of rules
 - decision tree size
 - compactness of classification rules

Conclusions

- K-Nearest Neighbor Classifier is Learning by analogy
- K-Nearest Neighbor algorithm:
 - To determine the class of a new example E:
 - Calculate the distance between E and all examples in the training set
 - Select K-nearest examples to E in the training set
 - Assign E to the most common class among its K-nearest neighbors
- <u>Strengths</u>
 - Simple to implement and use
 - Comprehensible easy to explain prediction
 - Robust to noisy data by averaging k-nearest neighbors.
 - Some appealing applications
- Weaknesses
 - Need a lot of space to store all examples.
 - Takes more time to classify a new example than with a model (need to calculate and compare distance from new example to all other examples).