
68
00

0

1: Embedded Systems

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

SEE3223 Microprocessors

68
00

0

Microprocessor-Based Systems
•  Aims

–  To review the main elements of a microprocessor system.
•  Intended Learning Outcomes

–  At the end of this module, students should be able to:
•  Define and explain important terms associated with both hardware and

software elements of a microprocessor system
•  Tell the difference between general purpose computing and embedded

computing
•  List down the major components inside a computer & processor
•  Tell the difference between computer, processor, microprocessor and

microcontroller
•  Explain instruction execution cycles of a generic microprocesso

1-2

68
00

0

SEE3223 Microprocessor Systems
•  What’s in this course:

–  Assembly language programming
–  Microprocessor concepts
–  Hardware interfacing

•  Pre-Requisites
–  Number representation, coding, registers, state machines
–  Realisation of simple logic circuits
–  Integrated circuit technologies
–  Designing with MSI components
–  Flip-Flops
–  Counters and sequential MSI components
–  Register transfer logic

1-3

68
00

0

Reading List
Required Text:

•  Muhammad Mun’im Ahmad Zabidi (2011), Sistem Terbenam dengan

Mikropemproses 68000, Penerbit UTM Press.

Recommended Readings:

•  Antonakos, J.L. (2003), The 68000 Microprocessor: Hardware and

Software Principles and Applications, 5th Ed., Prentice Hall.

•  Clements A.(1997), Microprocessor Systems Design: 68000 Software,
Hardware and Intefacing, 3rd Ed., PWS Kent Publishing.

•  Walter A. Triebel, Avtar Singh (1991), The 68000 and 68020
Microprocessors, Prentice Hall.

1-4

68
00

0

Computing Systems
•  Rapid pace of information technology is due to introduction of

new microprocessors
•  Most of us think of desktop computers

–  PC
–  Laptop
–  Mainframe
–  Server

•  Maybe at most handheld computer (PDA)
•  In this course, we will look at another type of computing

system which is far more common that you ever imagined 

1-5

68
00

0

Computer Classifications
•  Classification of computers:

–  Servers:
•  Big, expensive, available 24x7 (read “24 by 7” or 24 hours a day, 7

days a week. Mainframes are old servers made by IBM.
–  Desktops:

•  computers on your desk
–  Laptops:

•  computers you carry in your bag
–  PDA (personal digital assistants):

•  computers you carry in your pocket
–  Embedded systems:

•  computers that don’t look like computers!

•  An embedded system is a type of computer
1-6

68
00

0

Embedded Systems
•  Account for >99% of new microprocessors

–  Consumer electronics
–  Vehicle control systems
–  Medical equipment
–  Sensor networks

•  Desktop processors (Intel Core, AMD Athlon, PowerPC, etc)
combined is only 1%

1-7

68
00

0

Embedded Systems
•  Simple definition: Computing systems embedded within

electronic devices
•  Nearly any computing system other than a desktop computer
•  Designed to perform a specific function
•  Billions of units produced yearly, versus millions of desktop

units
•  Take advantage of application characteristics to optimize the

design
•  As electrical or electronics engineers, you may be required to

design an embedded system
–  But you BUY (not design) a general purpose computer

1-8

68
00

0

General Purpose vs Embedded Systems
General Purpose Embedded
Intended to run a fully general set
of applications

Runs a few applications often
known at design time

End-user programmable Not end-user programmable
Faster is always better Operates in fixed run-time

constraints, additional performance
may not be useful/valuable

Differentiating features:
•  Speed (need not be fully

predictable)
•  Software compatibility
•  Cost (eg RM3k vs RM5k per

laptop)

Differentiating features:
•  Power
•  Cost (eg RM2 vs RM2.50)
•  Size
•  Speed (must be predictable)

1-9

68
00

0

A Computer System – Simplified View

1-10

Control bus

Address bus

Data bus

An embedded system also has the same
structure but at a smaller size

CPU

Memory

Input/Output

68
00

0

Microprocessor – Basic concept

1-11

Microprocessor, by-itself, completely useless – must have external peripherals to
Interact with outside world

CPU

Control bus

16-bit / 32-bit / 64-bit wide

Timing signals, ready signals,
interrupts etc

bidirectional
8-bit / 16-bit / 32-bit / 128-bit

Data bus

Address bus

68
00

0

Microprocessor – Basic Concept

1-12

Boot
ROM

Used at
startup

Instruction
(program)

ROM

Data
RAM

Trans-
ducers

Keyboard
Screen
UART

Parallel
interface

etc

Microprocessor, by-itself, completely useless – must have external peripherals to
Interact with outside world

CPU

Address

Control

Data

68
00

0

“Glue Logic”

1-13

Decode Logic

CS* – chip select

Every external device needs some “glue logic” to interface with the processor.

External
Device

Address

Control

Data

Device itself
with all

necessary
internal logic

Address

Control

Data

  Address strobe
  Data strobe
  Read/write control
  Output Enable
  Interrupt signals
  etc

We’ll study all the control signals when we study microprocessor hardware.

Other Glue Logic

68
00

0

Microcontroller – Basic concept

1-14

Microcontroller - put a limited amount of most commonly used resources inside one chip

Boot
ROM

Program
ROM

Data
RAM

Trans-
ducers Some I/O

CPU

Address

Control

Data

68
00

0

Microprocessor vs Microcontroller
•  Microprocessor:

–  A chip that contains only the
processor

–  Need other chips to make a
working system

–  More flexible
–  Can have very few I/O or many I/O

devices using the same processor
chip

1-15

•  Microcontroller:
–  A chip that contains all the

components of a computer –
processor, memory and input/
output

–  Less flexibility
–  Less component count in system
–  Less powerful

No matter what is the system size, the most important component is still the processor.

68
00

0

Other Processors in Embedded Systems
•  Embedded Controllers:

–  More powerful (32 bits) than microcontrollers (8 bits)
–  Normally contains only processor and input/output, memory is external

•  Digital Signal Processors:
–  Embedded processors optimized for digital signal processing
–  Commonly found in handphones, modems, communications systems

•  Graphics Processors:
–  Very powerful processors found in graphics cards of workstations

•  Programmable Logic Controllers:
–  Microprocessor boards usually found in industrial applications

1-16

68
00

0

To design a µP System, we must know…
•  Fundamentals:

–  What’s inside a computer
–  What’s inside a processor

•  Programming:
–  What happens in the processor when it’s running a program
–  What do we need to write a program
–  How to create a program
–  How to run a program
–  How to fix a program error

•  Hardware design:
–  Timing diagrams
–  Interfacing with other chips

1-17

68
00

0

Software
•  Computer software

–  Computer programs are known as software

•  Program:
–  Sequence of instructions that perform a task
–  Think of it like playing music

•  Instruction:
–  The simplest operation performed by the processor
–  Think of it as a note coming from a musical instrument

•  How the computer works:
–  Fetch an instruction from memory
–  Decode the instruction
–  Execute the instruction
–  Repeat 1-18

68
00

0

Machine & Assembly Language
•  Machine instruction

–  A sequence of binary digits which can be executed by the processor, e.g. 0001
1011.

–  Hard to understand for human being
•  Assembly language

–  An assembly program consists of assembly instructions
–  An assembly instruction is a mnemonic representation of a machine

instruction e.g. MUL may stand for “multiply”
–  Assembly programs must be translated into object code before it can be

executed -- translated by an assembler.
–  Two types of assemblers: cross assembler and native assembler.
–  Cross assembler runs on one computer and generates machine instructions

that will be executed by another computer that has different instruction set
–  Native assembler runs and generates instructions for the same computer.
–  Drawbacks of assembly programs:

•  Dependent on hardware organisation, difficult to understand long programs, low
programmer productivity

1-19

68
00

0

High-level language (HLL)
•  High-Level Language

–  Syntax of a high-level language is similar to English
–  A translator is required to translate the program written in a high-level

language into object code -- done by a compiler.
–  There are cross compilers that run on one one computer but translate

programs into machine instructions to be executed on a computer with
a different instruction set.

–  Main drawback is slower execution speed of the machine code
obtained after compiling an HLL program.

–  However, C language has been extensively used in microcontroller
programming in industry.

1-20

68
00

0

Central Processing Unit (CPU)

1-21

Unit kawalan

ALU

Menyimpan
maklumat

Mengawal

Memproses

Daftar

Bas kawalan

B
as

 d
al

am
an

Bas data

Bas alamat

68
00

0

Important Registers
•  Program Counter (PC)

–  Keeps track of program execution
–  Address of next instruction to read from memory
–  May have auto-increment feature or use ALU
–  Some manufacturers call this register the Instruction Pointer (IP)

•  Instruction Register (IR)
–  Invisible to programmer
–  Contains current instruction
–  Includes ALU operation and address of operand

•  Data Registers
–  Stores data. For simple µP, it may be called accumulators.

•  Address Registers
–  Stores address of data. For special areas of memory, it may be called

index registers, stack pointers or base registers.
1-22

68
00

0

The ALU
•  Performs arithmetic & logic operations on several

bits simultaneously
•  The number of bits is a most important factor

determining the capabilities of the processor
•  Typical sizes:

–  4 bits (very small microcontroller: remote controllers)
–  8 bits (microcontrollers: 68HC05, 8051, PIC)
–  16 bits (low-end microprocessors: Intel 8086)
–  32 bits (most popular size today: Intel Core, PowerPC,

68000, ARM, MIPS)
–  64 bits (servers: IBM POWER & PowerPC G5, AMD

Opteron, Intel Itanium)
1-23

68
00

0

Memory
•  Looks like a very long list.
•  Each row is called a memory

location and has a unique address
•  Each location stores the same

number of bits, usually multiples of
8 bit (bytes)

•  Number of addresses 2N (where N
is an integer).

1-24

0
1
2
3

2N-1

Satu sel

Alamat kedudukan

Satu kedudukan

68
00

0

Memory Devices
•  Read-Only Memory

–  Non-volatile memory: contents is retained even without power
–  In embedded systems, used to store application programs and test

routines
–  Contents can be set by fixing it during manufacturing or “burning” it

using a programming device
–  Common types include MROM, PROM, EPROM and flash memory
–  Erasable types can only be rewritten a fixed number of times

•  Random Access Memory
–  Contents lost without power (volatile memory)
–  Used to store temporary data. In embedded system, very little RAM is

required. Some systems don’t even have RAM at all!
–  No limit to number of writes the device can handle
–  Fast writes (unlike EPROM/EEPROM)
–  Two major types are SRAM and DRAM 1-25

68
00

0

Memory Space and Address Bus
•  Smallest transferable amount of data from memory to CPU

(and vice versa) is one byte.
•  Each byte has a unique location or address.
•  The address of each byte is written in hexadecimal (hex).

–  For 68000, the prefix ‘$’ means a hex value.
•  The range of addresses accessible by the processor is the

memory space.
–  Limited by the size of the address bus

•  From the programmer’s point of view, 68000 address bus is
24 bits wide.
–  Memory space is 0 to 224-1 (16777216 or 16 Megabyte)
–  Written in hex as $000000 to $FFFFFF.

1-26

68
00

0

Word size and data bus size
•  Width of data bus determines the amount of data transferable

in one step
•  Original 68000 has a 16 bit data bus

–  Can transfer 1 word or 2 bytes at once
–  A longword requires two transfers

•  Current 68HC000 has a selectable bus width of 8 or 16 bits
–  Selecting 8 bit data bus results in cheaper system but lower

performance
•  The maximum amount of memory for any 68000 system is 16

Mega locations x 1 byte/location = 16 Megabytes
–  Can also be thought of 8 Megawords

1-27

68
00

0

Data & Address Buses

1-28

24-bit address bus

16-bit data bus

0 15

2 24 -1=
8M locations

Data bus 16 bits

Address bus 24 bits

$000000

$FFFFFF

CPU Memory

68
00

0

Memory Read Operation

1-29

Bas alamat

Perintah
BACA

10100000
00110010
01011111
11111111
00000001

11111111

0000
0001
0002
0003
0004

FFFF

0002 Bas data 01011111

68
00

0

Memory Write Operation

1-30

Bas alamat

Perintah
TULIS

10100000
00110010
01011111
11111111
00000001

11111111

0000
0001
0002
0003
0004

FFFF

0003

10000001 Bas data

10000001

68
00

0

Memory Map
•  System memory map

summarizes the memory
locations available to the
programmer

•  Must know the following
before we can write any
program
–  RAM start and end
–  ROM start and end
–  I/O devices

•  Very different from writing a
program in C where we don’t
have to know all this

1-31

The memory map of a
typical system

$000000

$001FFF

Interrupt
vectors

$002000

$01FFFF

ROM

Unused

RAM

I/O devices

$002000

$01FFFF

$FFFC00

$FFFFFF

$FFFBFF

$020000

68
00

0

Fetch-Execute Cycle
•  The processor executes instructions one-by-one according to

the sequence found in memory
•  Everything is controlled by, what else, the control unit in the

CPU.
•  To execute an instruction, the processor must fetch it from

memory.
•  The complete steps the processor takes to execute one

instruction is the instruction cycle or the fetch-execute
cycle

1-32

Fetch Execute

68
00

0

Instruction Cycle Details
•  On program start:

0. Load the program counter (PC) with the address of the first instruction

•  Fetch phase:
1. Read the instruction and put it into the instruction register (IR)
2. Control unit decodes the instruction; updates the PC for the next instruction

•  Execute phase:
3. Find the data required by the instruction.
4. Perform the required operation.
5. Store the results.
6. Repeat from Step 1.

1-33

68
00

0

Instruction Sequencing
•  Example – an instruction to add the contents of two locations

(A and B) and place result in a third register (C)
•  Before you do anything: set PC to point to 1st instruction in

the sequence

1-34

Addr Instructions

12 MOVE A,D0

14 ADD B,D0

16 MOVE D0,C

 …

100  (A) = 4
102 (B) = 5

104 (C)

12

Program Counter (PC)

Instruction Register (IR)

Data Register 0 (D0)

68
00

0

Instruction Sequencing

1-35

Addr Instructions

12 MOVE A,D0

14 ADD B,D0

16 MOVE D0,C

 …

100  (A) = 4
102 (B) = 5

104 (C)

14

Program Counter (PC)

MOVE A,D0

Instruction Register (IR)

4

Data Register 0 (D0)

68
00

0

Instruction Sequencing

1-36

Addr Instructions

12 MOVE A,D0

14 ADD B,D0

16 MOVE D0,C

 …

100  (A) = 4
102 (B) = 5

104 (C)

16

Program Counter (PC)

ADD B,D0

Instruction Register (IR)

9

Data Register 0 (D0)

68
00

0

Instruction Sequencing

1-37

Addr Instructions

12 MOVE A,D0

14 ADD B,D0

16 MOVE D0,C

 …

100  (A) = 4
102 (B) = 5

104 (C) = 9

18

Program Counter (PC)

MOVE D0,C

Instruction Register (IR)

9

Data Register 0 (D0)

68
00

0

Important ProcessorsYou Should Know

1-38

Year Company Device Significance
1971 Intel 4004 1st µP. A 4-bit device.
1974 Intel 8008 1st 8-bit µP.

Motorola 6800 1st 8-bit µP from Motorola.
Texas TMS 1000 First microcontroller. Can operate without support chips.

1978 Intel 8086 1st 16-bit µP.
1979 Motorola 68000 16/32-bit µP : the data bus is 16 bits externally, but 32-bit

internally.
1984 Motorola 68020 Full 32-bit µP derived from 68000. Has modern features

such cache memory, floating-point unit & full support for
modern operating systems.

1985 Intel 80386 32-bit µP from Intel, basically unchanged until Pentium of
today.

1986 ARM ARM1 32-bit RISC chips designed for low-power.
1993 Apple/

Motorola/
IBM

PowerPC 601 A RISC chip from Motorola derived from IBM POWER.
Ended 68k’s use as general purpose computing but the
family continues to live in embedded systems until today.

68
00

0

Selecting a Microprocessor
•  Choose the right one for your application

–  Primary criteria: Cost, Power, Size, Speed
–  Others: package options, integrated peripherals, potential for future

growth
•  Choose one with good software development support

–  development environment - good compiler and debugger availability
–  evaluation boards
–  in-circuit emulators for those with deep pockets
–  Operating system availability

•  Other considerations
–  Code density: affects power consumption, performance and system

cost
–  Hardware availability: make sure you can actually purchase the

microcontroller before designing it in
–  Prior expertise, licensing, etc 1-39

68
00

0

Summary
•  Microprocessors and embedded controllers are a ubiquitous part of life

today
•  Concept of a microprocessor & microcontroller
•  Understand how a µP works
•  Headhunters report that EEs familiar with µC, µP design are in the highest

possible demand
•  Web Resources:

–  How Microprocessors Work:
•  http://computer.howstuffworks.com/microprocessor.htm
•  http://www.intel.com/education/mpworks/
•  http://www.cse.psu.edu/~cg471/03f/hw/pj5/how-micro.html

–  Great Microprocessors of the Past and Present:
•  http://www.sasktelwebsite.net/jbayko/cpu.html

–  Great Moments in Microprocessor History:
•  http://www-128.ibm.com/developerworks/library/pa-microhist.html

1-40

