OPENCOURSEWARE

SEE3223 Microprocessors

1: Embedded Systems

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

innovative e entrepreneurial e global

e Aims

ocw.utm.my @ HTM

Microprocessor-Based Systems

— To review the main elements of a microprocessor system.

* Intended Learning Outcomes
— At the end of this module, students should be able to:

Define and explain important terms associated with both hardware and
software elements of a microprocessor system

Tell the difference between general purpose computing and embedded
computing

List down the major components inside a computer & processor

Tell the difference between computer, processor, microprocessor and
microcontroller

Explain instruction execution cycles of a generic microprocesso

1-2

ocw.utm.my @ HTM

SEE3223 Microprocessor Systems

« What' s in this course:
— Assembly language programming

Microprocessor concepts
Hardware interfacing

* Pre-Requisites

Number representation, coding, registers, state machines
Realisation of simple logic circuits

Integrated circuit technologies

Designing with MSI components

Flip-Flops

Counters and sequential MSI components

Register transfer logic

1-3

ocw.utm.my ®©UTM
Reading List

Required Text:

Muhammad Mun’im Ahmad Zabidi (2011), Sistem Terbenam dengan
Mikropemproses 68000, Penerbit UTM Press.

e 68000"
MIC(OD"OCGSSO"

Recommended Readings:

« Antonakos, J.L. (2003), The 68000 Microprocessor: Hardware and
Software Principles and Applications, 5 Ed., Prentice Hall.

 Clements A.(1997), Microprocessor Systems Design: 68000 Software,
Hardware and Intefacing, 3 Ed., PWS Kent Publishing.

« Walter A. Triebel, Avtar Singh (1991), The 68000 and 68020
Microprocessors, Prentice Hall.

ocw.utm.my @ QTM

Computing Systems

Rapid pace of information technology is due to introduction of
NEewW MICroprocessors

Most of us think of desktop computers
- PC

— Laptop

— Mainframe

— Server

Maybe at most handheld computer (PDA)

In this course, we will look at another type of computing
system which is far more common that you ever imagined ©

1-5

ocw.utm.my @ HTM

Computer Classifications

» Classification of computers:

— Servers:

* Big, expensive, available 24x7 (read “24 by 7” or 24 hours a day, 7
days a week. Mainframes are old servers made by IBM.

— Desktops:
« computers on your desk
— Laptops:
e computers you carry in your bag

— PDA (personal digital assistants):
« computers you carry in your pocket

— Embedded systems:
« computers that don’ t look like computers!

 An embedded system is a type of computer

1-6

ocw.utm.my ©UIM

Embedded Systems

* Account for >99% of new microprocessors
— Consumer electronics
— Vehicle control systems
— Medical equipment
— Sensor networks

» Desktop processors (Intel Core, AMD Athlon, PowerPC, etc)
combined is only 1%

1-7

ocw.utm.my @ QTM

Embedded Systems

Simple definition: Computing systems embedded within
electronic devices

Nearly any computing system other than a desktop computer
Designed to perform a specific function

Billions of units produced yearly, versus millions of desktop
units

Take advantage of application characteristics to optimize the
design

As electrical or electronics engineers, you may be required to
design an embedded system
— But you BUY (not design) a general purpose computer

1-8

ocw.utm.my

General Purpose vs Embedded Systems

Intended to run a fully general set
of applications

End-user programmable
Faster is always better

Differentiating features:

« Speed (need not be fully
predictable)

« Software compatibility

* Cost (eg RM3k vs RM5k per

laptop)

Runs a few applications often
known at design time

Not end-user programmable

Operates in fixed run-time
constraints, additional performance
may not be useful/valuable

Differentiating features:

* Power

» Cost (eg RM2 vs RM2.50)

« Size

« Speed (must be predictable)

1-9

 ocowutmmy ©UIM
A Computer System — Simplified View

i
Address bus A A]

Control bus

An embedded system also has the same
structure but at a smaller size

1-10

 oowutmmy ©UTM
Microprocessor — Basic concept

Address bus 16-bit / 32-bit / 64-bit wide

bidrractional
8-bit / 16-bit / 32-bit / 128-bit

Control bus Timing signals, ready signals,
interrupts etc

Microprocessor, by-itself, completely useless — must have external peripherals to
Interact with outside world

1-11

 conutmmy ©UIM
Microprocessor — Basic Concept

Address

Keyboard
Screen
CPU Trans- UART
ducers Parallel
interface
etc

Microprocessor, by-itself, completely useless — must have external peripherals to
Interact with outside world

Data

1-12

- oowutmmy ©UTM
“Glue Logic”

Every external device needs some “glue logic” to interface with the processor.
Address Address

Control

Control

1 Address strobe

1 Data strobe

1 Read/write control
1 Output Enable
[0 Interrupt signals
[etc

CS* — chip select

Data 1
Data

We’'ll study all the control signals when we study microprocessor hardware.
113

Gy @®UIM
R Microcontroller — Basic concept :

Address

pransy Some I/O
ducers

Microcontroller - put a limited amount of most commonly used resources inside one chip

1-14

ocw.utm.my

©UIM

I TEOLON N

Microprocessor vs Microcontroller

* Microprocessor:

A chip that contains only the
processor

Need other chips to make a
working system

More flexible

Can have very few I/O or many 1/O
devices using the same processor
chip

 Microcontroller:

A chip that contains all the
components of a computer —
processor, memory and input/
output

Less flexibility
Less component count in system
Less powerful

No matter what is the system size, the most important component is still the processor.

1-15

ocw.utm.my @ UTM

Other Processors in Embedded Systems

Embedded Controllers:

— More powerful (32 bits) than microcontrollers (8 bits)

— Normally contains only processor and input/output, memory is external
Digital Signal Processors:

— Embedded processors optimized for digital signal processing

— Commonly found in handphones, modems, communications systems
Graphics Processors:

— Very powerful processors found in graphics cards of workstations
Programmable Logic Controllers:

— Microprocessor boards usually found in industrial applications

1-16

ocw.utm.my @ HTM

To design a yP System, we must know...

 Fundamentals:
— What’s inside a computer
— What’ s inside a processor
* Programming:
— What happens in the processor when it’ s running a program
— What do we need to write a program
— How to create a program
— How to run a program
— How to fix a program error

* Hardware design:
— Timing diagrams
— Interfacing with other chips

1-17

ocw.utm.my

Software

Computer software
— Computer programs are known as software

Program:

— Sequence of instructions that perform a task

— Think of it like playing music

Instruction:

— The simplest operation performed by the processor

— Think of it as a note coming from a musical instrument
How the computer works:

— Fetch an instruction from memory

— Decode the instruction

— Execute the instruction
— Repeat

1-18

ocw.utm.my @ UTM

Machine & Assembly Language

 Machine instruction
— A sequence of binary digits which can be executed by the processor, e.g. 0001

1011.
Hard to understand for human being

« Assembly language

An assembly program consists of assembly instructions

An assembly instruction is a mnemonic representation of a machine
instruction e.g. MUL may stand for “multiply”

Assembly programs must be translated into object code before it can be
executed -- translated by an assembler.

Two types of assemblers: cross assembler and native assembler.

Cross assembler runs on one computer and generates machine instructions
that will be executed by another computer that has different instruction set
Native assembler runs and generates instructions for the same computer.
Drawbacks of assembly programs:

« Dependent on hardware organisation, difficult to understand long programs, low
programmer productivity
1-19

ocw.utm.my @ HTM

High-level language (HLL)

 High-Level Language

Syntax of a high-level language is similar to English

A translator is required to translate the program written in a high-level
language into object code -- done by a compiler.

There are cross compilers that run on one one computer but translate
programs into machine instructions to be executed on a computer with
a different instruction set.

Main drawback is slower execution speed of the machine code
obtained after compiling an HLL program.

However, C language has been extensively used in microcontroller
programming in industry.

1-20

ocw.utm.my @QIM

Central Processing Unit (CPU)

Me nyimpan
maklumat

\

Memproses

e Daftar

Unit kawalan [l

/

Mengawal

o
Q
7
i
2
o

1-21

ocw.utm.my

Important Registers

Program Counter (PC)

Keeps track of program execution

Address of instruction to read from memory

May have auto-increment feature or use ALU

Some manufacturers call this register the Instruction Pointer (IP)

Instruction Register (IR)

Invisible to programmer
Contains current instruction
Includes ALU operation and address of operand

Data Registers

Stores data. For simple uP, it may be called accumulators.

Address Registers

— Stores address of data. For special areas of memory, it may be called

index registers, stack pointers or base registers.

1-22

ocw.utm.my @ QTM

The ALU

« Performs arithmetic & logic operations on several
bits simultaneously

* The number of bits is a most important factor
determining the capabilities of the processor

* Typical sizes:
— 4 bits (very small microcontroller: remote controllers)
— 8 bits (microcontrollers: 68HCO05, 8051, PIC)

— 16 bits (low-end microprocessors: Intel 8086)
— 32 bits (most popular size today: Intel Core, PowerPC,
68000, ARM, MIPS)

— 64 bits (servers: IBM POWER & PowerPC G5, AMD

Opteron, Intel ltanium)
1-23

ocw.utm.my

Memory

Looks like a very long list.
Each row is called a memory
location and has a unique address

Each location stores the same
number of bits, usually multiples of
8 bit (bytes)

Number of addresses 2~ (where N
is an integer).

w N -~ O

Alamat kedudukan

Satu kedudukan

Satu sel

2N-1

1-24

ocw.utm.my @ HTM

Memory Devices

« Read-Only Memory

Non-volatile memory: contents is retained even without power

In embedded systems, used to store application programs and test
routines

Contents can be set by fixing it during manufacturing or “burning” it
using a programming device

Common types include MROM, PROM, EPROM and flash memory
Erasable types can only be rewritten a fixed number of times

« Random Access Memory

Contents lost without power (volatile memory)

Used to store temporary data. In embedded system, very little RAM is
required. Some systems don’ t even have RAM at all!

No limit to number of writes the device can handle
Fast writes (unlike EPROM/EEPROM)
Two major types are SRAM and DRAM

1-25

ocw.utm.my @ QTM

Memory Space and Address Bus

Smallest transferable amount of data from memory to CPU
(and vice versa) is one byte.

Each byte has a unique location or address.
The address of each byte is written in hexadecimal (hex).
— For 68000, the prefix ‘$° means a hex value.

The range of addresses accessible by the processor is the
memory space.
— Limited by the size of the address bus

From the programmer’ s point of view, 68000 address bus is
24 bits wide.

— Memory space is 0 to 224-1 (16777216 or 16 Megabyte)

— Written in hex as $000000 to $FFFFFF.

1-26

ocw.utm.my @ QTM

Word size and data bus size

Width of data bus determines the amount of data transferable
In one step

Original 68000 has a 16 bit data bus

— Can transfer 1 word or 2 bytes at once
— Alongword requires two transfers

Current 68HCO000 has a selectable bus width of 8 or 16 bits

— Selecting 8 bit data bus results in cheaper system but lower
performance

The maximum amount of memory for any 68000 system is 16
Mega locations x 1 byte/location = 16 Megabytes

— Can also be thought of 8 Megawords

1-27

' ocwummy ©UTM
Data & Address Buses

24-bit address bus

16-bit data bus

b
=

Data bus 16 bits

15 < > 0
$000000
Address bus 24 bits T
\ 224-1 _
8M Iocal'ons
SFFFFFF

1-28

ocw.utm.my 4g:j;[11f1y1

Memory Read Operation

0000| 10100000

0001(00110010
0002(01011111
0003|11111111
000400000001

Bas data 01011111

0002 Basalama

FFFFL11111111

Perintah -
BACA

1-29

ocw.utm.my ©UIM

Memory Write Operation

- :}
10000001 Basa

Perintah -
TULIS

0000| 10100000

0001{00110010
0002101011111 10000001
0003 | 14444117
0004| 00000001

FFFFL11111111

1-30

ocw.utm.my @ HTM

Memory Map

« System memory map #000000 Interrupt
summarizes the memory —— vectors
locations available to the $002000
programmer N ROM

* Must know the following 3002000 AN
before we can write any SOLFFFF
program $020000

— RAM start and end
— ROM start and end Unused
— |/O devices SFFFBFF

$FFFCO0

* Very different from writing a /0 devices
program in C where we don'’t PFFFFFF
have to know all this The memory map of a

typical system

1-31

P ©UTM

Fetch-Execute Cycle

The processor executes instructions one-by-one according to
the sequence found in memory

Everything is controlled by, what else, the control unit in the
CPU.

To execute an instruction, the processor must fetch it from
memory.

The complete steps the processor takes to execute one
instruction is the instruction cycle or the fetch-execute
cycle

1-32

ocw.utm.my @ UTM

Instruction Cycle Detalls

* On program start:
0. Load the program counter (PC) with the address of the first instruction

 Fetch phase:

1. Read the instruction and put it into the instruction register (IR)
2. Control unit decodes the instruction; updates the PC for the next instruction

» Execute phase:
3. Find the data required by the instruction.
4. Perform the required operation.
5. Store the results.
6. Repeat from Step 1.

1-33

ocw.utm.my @ HTM

Instruction Sequencing

« Example — an instruction to add the contents of two locations
(A and B) and place result in a third register (C)

« Before you do anything: set PC to point to 1st instruction in
the sequence

Addr Instructions

12 MOVE A,DO
Program Counter (PC)
12 14 ADD B, DO

16 MOVE DO, C

Instruction Register (IR)

100 (A) =4
102 (B) =5
104 (O

Data Register 0 (DO)

1-34

ocw.utm.my @UIM

Instruction Sequencing

Addr Instructions

Program Counter (PC)

14 ADD B,DO

Instruction Register (IR)
16 MOVE DO, C

Data Register 0 (DO) A
4 100 (A) =4

102 (B) =5
104 (O

1-35

ocw.utm.my @UIM

Instruction Sequencing

Program Counter (PC) Addr Instructions

16 12 MOVE A,DO
. . 14
Instruction Register (IR)

16 MOVE DO, C

Data Register 0 (DO) B
9 100 (A) =4

102 (B) =5
104 (O

1-36

ocw.utm.my @UIM

Instruction Sequencing

Program Counter (PC) Addr Instructions
18 12 MOVE A,DO
: : 14 ADD B,DO
Instruction Register (IR)
16

Data Register 0 (DO) B
9 100 (A) =4

102 (B) =5
104 (©) =9

1-37

ocw.utm.my @ UTM

Important ProcessorsYou Should Know

1971 Intel 4004 1st uP. A 4-bit device.
1974 Intel 8008 1st 8-bit pP.
Motorola 6800 1st 8-bit uP from Motorola.

Texas TMS 1000 First microcontroller. Can operate without support chips.
1978 Intel 8086 15t 16-bit uP.
1979 Motorola 68000 16/32-bit uP : the data bus is 16 bits externally, but 32-bit

internally.

1984 Motorola 68020 Full 32-bit yP derived from 68000. Has modern features

such cache memory, floating-point unit & full support for
modern operating systems.

1985 Intel 80386 32-bit yP from Intel, basically unchanged until Pentium of
today.
1986 ARM ARM1 32-bit RISC chips designed for low-power.
1993 Apple/ PowerPC 601 A RISC chip from Motorola derived from IBM POWER.
Motorola/ Ended 68k’ s use as general purpose computing but the
IBM family continues to live in embedded systems until today.

1-38

ocw.utm.my @ HTM

Selecting a Microprocessor

« Choose the right one for your application
— Primary criteria: Cost, Power, Size, Speed

— Others: package options, integrated peripherals, potential for future
growth

« Choose one with good software development support

— development environment - good compiler and debugger availability
— evaluation boards

— in-circuit emulators for those with deep pockets
— Operating system availability
* Other considerations

— Code density: affects power consumption, performance and system
cost

— Hardware availability: make sure you can actually purchase the
microcontroller before designing it in

— Prior expertise, licensing, etc 1-39

ocw.utm.my @ UTM

Summary

Microprocessors and embedded controllers are a ubiquitous part of life
today

Concept of a microprocessor & microcontroller
Understand how a uP works

Headhunters report that EEs familiar with uC, uP design are in the highest
possible demand

Web Resources:

— How Microprocessors Work:
 http://computer.howstuffworks.com/microprocessor.htm
 http://www.intel.com/education/mpworks/
 http://www.cse.psu.edu/~cg471/03f/hw/pj5/how-micro.html

— Great Microprocessors of the Past and Present:

« http://www.sasktelwebsite.net/jbayko/cpu.html

— Great Moments in Microprocessor History:

* http://www-128.ibm.com/developerworks/library/pa-microhist.html

1-40

