
Recursive

1

SCJ2013 Data Structure & Algorithms

Nor Bahiah Hj Ahmad & Dayang
Norhayati A. Jawawi

Objectives

At the end of the class students should be able
to:

• Identify problem solving characterestics using
recursive.

• Trace the implementation of recursive
function.

• Write recursive function in solving a problem

12/8/2011 2

Introduction

• Repetitive algorithm is a process wherby a
sequence of operations is executed repeatedly
until certain condition is achieved.

• Repetition can be implemented using loop :
while, for or do..while.

• Besides repetition using loop, C++ allow
programmers to implement recursive to
replace loops.

• Not all programming language allow recursive
implement, e.g. Basic language.

3

Introduction

• Recursive is a repetitive process in which an
algorithm calls itself.

• Recursively defined data structures (like lists)
are very well-suited to be processed using
recursive procedure.

• A recursive procedure is mathematically more
elegant than one using loops. Sometimes
procedures can become straightforward and
simple using recursion as compared to loop
solution procedure. 4

Introduction

• Advantage : Recursive is a powerful problem
solving approach, since problem solving can
be expressed in an easier and neat approach.

• Drawback : Execution running time for
recursive function is not efficient compared to
loop, since every time a recursive function
calls itself, it requires multiple memory to
store the internal address of the function.

5

Recursive solution

• Not all problem can be solved using recursive.

• Recursive solve problem by:

1. breaking the problem into the same smaller
instances of problem,

2. solve each smallest problem and

3. combine back the solutions.

12/8/2011 6

Understanding recursion

Every recursive definition has 2 parts:

• BASE CASE(S): case(s) so simple that they can
be solved directly

• RECURSIVE CASE(S): more complex and make
use of recursion to:

– break the problem to smaller sub-problems and

– combine into a solution to the larger problem

12/8/2011 7

Rules for Designing Recursive
Algorithm

1. Determine the base case – is terminal case,
there is one or more terminal cases whereby
the problem will be solved and stop to call
recursive function.

2. Determine the general case – recursive call
by reducing the size of the problem

3. Combine the base case and general case into
an algorithm

12/8/2011 8

Designing Recursive Algorithm

• Recursive algorithm.

12/8/2011 9

if (terminal case is reached) // base case

<solve the problem>

else // general case

< reduce the size of the problem and

 call recursive function >

Base case

and general

case is

combined

Classic examples

• Multiplying numbers

• Find Factorial value.

• Fibonacci numbers

12/8/2011 10

Multiply 2 numbers using Addition
Method

• Multiplication of 2 numbers can be achieved
by using addition method.

• Example :

 To multiply 8 x 3, the result can also be achieved
by adding value 8, 3 times as follows:

 8 + 8 + 8 = 24

12/8/2011 11

Implementation of Multiply()
using loop

int Multiply(int M,int N)

{ for (int i=1,i<=N,i++)

 result += M;

 return result;

}//end Multiply()

12/8/2011 12

Solving Multiply problem recursively

Steps to solve Multiply() problem recursively:

• Problem size is represented by variable N. In this
example, problem size is 3. Recursive function will call
Multiply() repeatedly by reducing N by 1 for each
respective call.

• Terminal case is achieved when the value of N is 1 and
recursive call will stop. At this moment, the solution for
the terminal case will be computed and the result is
returned to the called function.

• The simple solution for this example is represented by
variable M. In this example, the value of M is 8.

12/8/2011 13

Implementation of recursive function:
Multiply()

12/8/2011 14

int Multiply (int M,int N)

{

 if (N==1)

 return M;

 else

 return M + Multiply(M,N-1);

}//end Multiply()

Recursive algorithm

3 important factors for recursive
implementation:

• There’s a condition where the function will
stop calling itself. (if this condition is not
fulfilled, infinite loop will occur)

• Each recursive function call, must return to
the called function.

• Variable used as condition to stop the
recursive call must change towards terminal
case.

15

12/8/2011 16

Tracing Recursive Implementation
for Multiply().

Returning the Multiply() result

to the called function

12/8/2011 17

Factorial Problem

• Problem : Get Factorial value for a positive
integer number.

• Solution : The factorial value can be achieved
as follows:

0! is equal to 1

1! is equal to 1 x 0! = 1 x 1 = 1

2! is equal to 2 x 1! = 2 x 1 x 1 = 2

3! is equal to 3 x 2! = 3 x 2 x 1 x 1 = 6

4! is equal to 4 x 3! = 4 x 3 x 2 x 1 x 1 = 24

N! is equal to N x (N-1)! For every N>0
12/8/2011 18

Solving Factorial Recursively

1. The simple solution for this example is
represented by the factorial value equal to 1.

2. N, represent the factorial size. The recursive
process will call factorial() function
recursively by reducing N by 1.

3. Terminal case for factorial problem is when
N equal to 0. The computed result is
returned to called function.

12/8/2011 19

Factorial function

• It checks whether N is equal 0. If so, the
function just return 1.

• Otherwise, it computes the factorial of (N – 1)
and multiplies it by N.

12/8/2011 20

int Factorial (int N)

{ /*start Factorial*/

if (N==0)

 return 1;

else

 return N * Factorial (N-1);

} /*end Factorial

Execution of Factorial(3)

12/8/2011 21

Terminal case for Factorial(3)

12/8/2011 22

Return value
for

Factorial(3)

12/8/2011 23

Execution of Factorial(3)

Fibonacci Problem

• Problem : Get Fibonacci series for an integer positive.
• Fibonacci Siries : 0, 1, 1, 2, 3, 5, 8, 13, 21,…..
• Start from 0 and 1
• Every Fibonacci series is the result of adding 2 previous

Fibonacci numbers.
• Solution: Fibonacci value of a number can be

computed as follows:
Fibonacci (0) = 0
Fibonacci (1) = 1
Fibonacci (2) = 1
Fibonacci (3) = 2
Fibonacci (N) = Fibonacci (N-1) + Fibonacci (N-2)

12/8/2011 24

Solving Fibonacci Recursively

1. The simple solution for this example is
represented by the Fibonacci value equal to
1.

2. N, represent the series in the Fibonacci
number. The recursive process will integrate
the call of two Fibonacci () function.

3. Terminal case for Fibonacci problem is when
N equal to 0 or N equal to 1. The computed
result is returned to the called function.

12/8/2011 25

Fibonacci() function

int Fibonacci (int N)

{ /* start Fibonacci*/

 if (N<=0)

 return 0;

 else if (N==1)

 return 1;

 else

 return Fibonacci(N-1) + Fibonacci (N-2);

}

12/8/2011 26

• Passing and returning value from function.

27

Implementation of
Fibonacci()

Infinite Recursive

• Impossible termination condition

• How to avoid infinite recursion:

– must have at least 1 base case (to terminate the
recursive sequence)

– each recursive call must get closer to a base case

12/8/2011 28

Infinite Recursive : Example

12/8/2011 29

#include <stdio.h>

#include <conio.h>

void printIntegesr(int n);

main()

{ int number;

 cout<<“\nEnter an integer value :”;

 cin >> number;

 printIntegers(number);

}

void printIntegers (int nom)

{ cout << “\Value : “ << nom;

 printIntegers (nom);

}

1. No condition

satatement to

stop the

recursive call.

2. Terminal case

variable does

not change.

Improved Recursive function

#include <stdio.h>

#include <conio.h>

void printIntegers(int n);

main()

{ int number;

 cout<<“\nEnter an integer value :”;

 cin >> number;

 printIntegers(number);

}

void printIntegers (int nom)

{ if (nom >= 1)

 cout << “\Value : “ << nom;

 printIntegers (nom-2);

}

 12/8/2011 30

Exercise: Give the

output if the value

entered is 10 or 7.

 condition satatement

to stop the recursive

call and the changes

in the terminal case

variable are

provided.

Conclusion and Summary

• Recursive is a repetitive process in which an
algorithm calls itself.

• Problem that can be solved by breaking the
problem into smaller instances of problem, solve
and combine.

• Every recursive definition has 2 parts:
 BASE CASE: case that can be solved directly

 RECURSIVE CASE: use recursion to solve smaller sub-
problems & combine into a solution to the larger
problem

12/8/2011 31

References

1. Nor Bahiah et al. Struktur data & algoritma
menggunakan C++. Penerbit UTM, 2005

2. Richrd F. Gilberg and Behrouz A. Forouzan,
“Data Structures A Pseudocode Approach
With C++”, Brooks/Cole Thomson Learning,
2001.

12/8/2011 32

