
Stack
SCSJ2013 Data Structures & Algorithms

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Faculty of Computing

Course Objectives

At the end of the lesson students are expected to

be able to:

Understand stack concept and its
structure.

Understand operations that can be done
on stack.

Understand and know how to implement
stack using array and linked list.

Introduction to Stack

What is stack?

• Stack is a collection of items
which is organized in a
sequential manner.

• Stack examples: stack of books
or stack of plates.

Stack operations

All additions and deletions are
restricted at one end, called
top. Known as LAST IN FIRST
OUT (LIFO) data structure.

What Is Stack?

• Stack is an abstract data type
• Adding an entry on the top

(push)
• Deleting an entry from the top

(pop)

9

8

7

5

6

4

3

2

1

0

Index

12

10

8

6

4

2

PUSH

Top

POP

Last-in First-out (LIFO)

5

9

8

7

5

6

4

3

2

1

0

Index

12

10

8

6

4

2

PUSH

Top

9

8

7

5

6

4

3

2

1

0

10

8

6

4

2

Top

Index

Pop 12

Implementation for Stack

Array

 Size of stack is fixed during declaration

 Item can be pushed if there is some space
available, need isFull() operations.

 Need a variable called, top to keep track the top of
a stack.

 Stack is empty when the value of top is –1.

Linked List

 Size of stack is flexible. Item can be pushed and
popped dynamically.

 Need a pointer, called top to point to top of stack.

6

Array Implementation of Stack

Stack Operations:

• createStack()

• push(item)

• pop()

• isEmpty()

• isFull()

• stackTop()

“Stack can be visualized as array,

BUT the operations can be done on

top stack only. “

9

8

7

5

6

4

3

2

1

0

Index

12

10

8

6

4

2

PUSH

Top

POP

Array Implementation of Stack

3 things to be considered for stack with array

1. Stack Empty : when top is -1.

2. Push operations: To insert item into stack
2 statements must be used

top = top + 1;

stack[top] = newitem;

3. pop operations: To delete item from stack.
2 statements should be used

Item = stack[top]; or stackTop();

top = top – 1;

• Item = stack[top]; statement is needed if
we want to check the value to be popped.

8

Array Implementation of Stack
Stack declaration:

const int size = 100;

class stack

{

private : // data declaration

int top ;

char data[size] ;

public : // function declaration

void createStack();

void push(char) ; // insert operation

void pop() ; // delete operation

char stackTop() ; // get top value

bool isFull() ; // check if stack is Full

bool isEmpty(); // check if stack is empty

} ;

9

Array Implementation of Stack

 We need two data attributes for stack:

1. Data : to store item in the stack, in this example
data will store char value

2. top : as index for top of stack, integer type

 Size of the array that store component of stack is
100. In this case, stack can store up to 100 char
value.

 Declaration of stack instance:

stack aStack;

10

Array Implementation of Stack

createStack() operation

 Stack will be created by initializing top to -1.

 createStack() implementation:

 Top is –1 :- means that there is no item

being pushed into stack yet.
11

void stack:: createStack();

{

top = -1;

}

Array Implementation of Stack
isFull() Operation

 This operation is needed ONLY for implementation of stack
using array.

 In an array, size of the array is fixed and to create new item
in the array will depend on the space available.

 This operation is needed before any push operation can be
implemented on a stack.

 bool isFull() implementation

 Since the size of the array is 100,
bool isFull() will return true, If top is 99 (100 – 1).

bool isFull() will return false, if there is some space
available, top is less than 100.

bool stack::isFull()

{

return (top == size-1);

}

Array Implementation of Stack
bool isEmpty() operation

 This operation will check whether the array for stack is
empty.

 This operation is needed before ANY pop operation
can be done. If the stack is empty, then pop operation
cannot be done.

 bool isEmpty() will return true if top –1 and return
false if top is not equal to -1, showing that the stack
has element in it.

 bool isEmpty()implementation :

bool stack::isEmpty()

{

return (top == -1);

}

Array Implementation of Stack
push(newItem) operation : Insert item onto stack
• push() operation will insert an item at the top of stack. This

operation can be done only if there is space availbale in the
array

• Before any item can be inserted into a stack, isFull()
operation must be called first.

• Insertion operation involve the following steps:
– Top will be increased by 1.

top = top + 1;
– New item will be inserted at the top

data[Top] = newItem;

before push()

after push()

Array Implementation of Stack
void stack::push(char newitem)

{

if (isFull()) // check whether stack is full

cout << “Sorry,Cannot push item.

Stack is now full!"<< endl;

else

{ top = top + 1 // Top point to next index

data[top] = newitem; //assign new item at top

}//end else

}//end push()

15

Top will be increased first before item is inserted in

order to avoid inserting item at the current top value.

Array Implementation of Stack

pop()Operation

• This operation will delete an item at top of scak.

• Function isEmpty() will be called first in order to ensure
that there is item in a stack to be deleted.

• pop() operation will decrease the value of top by 1:

top = top - 1;

16

Before pop() after pop()

Array Implementation of Stack
void stack::pop()

{

char item;

if (isEmpty())

cout << “Sorry, Cannot pop item.

Stack is empty!” << endl;

else

{ //display value at top to be deleted

cout << “Popped value :” << data[top];

top = top – 1;

// top will hold to new index

}// end if

}//end pop

17

Array Implementation of Stack

char stackTop()

{ //function to get top value

if (isEmpty())

cout <<“Sorry, stack is empty!”<<

endl;

else

return data[top];

} // end stackTop

18

stackTop()operation : to get value at the top

Linked List Implementation

of Stack

Linked List Implementation of

Stack
 Stack implemented using linked list – number of

elements in stack is not restricted to certain size.

 Dynamic memory creation, memory will be
assigned to stack when a new node is pushed into
stack, and memory will be released when an
element being popped from the stack.

 Stack using linked list implementation can be
empty or contains a series of nodes.

 Each node in a stack must contain at least 2
attributes:

 i) data – to store information in the stack.

 ii) pointer next (store address of the next node in the
stack

20

Linked List Implementation of

Stack
Basic operations for a stack implemented using
linked list:

 createStack() – initialize top

 push(char) – insert item onto stack

 pop() – delete item from stack

 isEmpty() – check whether a stack is empty.

 stackTop() – get item at top

isFull() operation is not needed since elements
can be inserted into stack without limitation to the
stack size.

 Push and pop operations can only be done at the
top ~ similar to add and delete in front of the linked
list.

21

Linked List Implementation of

Stack: push() and pop()

operations

22

Create stack

Linked List Implementation of

Stackclass nodeStack

{

int data;

nodeStack *next;

};

class stack

{

private: // pengisytiharan ahli data

nodeStack *top;

public : // pengisytiharan ahli fungsi

void createStack(); // set Top to NULL

void push(int) ; // insert item into stack

void pop() ; // delete item from stack

int stackTop() ; // get content at top stack

bool isEmpty(); // check whether stack is empty

};

23

Create Stack and isEmpty()
 Creating a stack will initialize top to NULL -

showing that currently, there is no node in the
stack.

 Is Empty() stack will return true if stack is empty, top is NULL.

bool stack::isEmpty()

{

return (top == NULL);

}

24

void stack::createStack()

{

top = NULL;

}

push() operations

 2 conditions for inserting element in stack:

– Insert to empty stack.

– Insert item to non empty stack : stack with value.

25

push() to empty stack

26

In this situation the new node being inserted, will become

the first item in stack.

STEP 1 : newnode-> next = head;

STEP 2 : head = newnode;

push()to non-empty stack
This operation is similar to inserting element in front
of a linked list. The next value for the new element
will point to the top of stack and head will point to
the new element.

27

STEP 1 : newnode-> next = head;

STEP 2 : head = newnode;

Delete item from stack (pop) Pop operation can only be done to non-empty stack. Before
pop() operation can be done, operation must be called in order to
check whether the stack is empty or there is item in the stack. If
isEmpty() function return true, pop() operation cannot be done.

 During pop() operation, an external pointer is needed to point to
the delete node. In the figure below, delnode is the pointer
variable to point to the node that is going to be deleted.

28

STEP 1 : delnode = head;

STEP 2 : head = delnode -> next; or head = head->next;

STEP 3 : delete(delnode);

Summary

What we have learned so far….

 Stack is a LIFO data structure

 Can be implemented using array and link

list

 Basic Operation for a stack are follows:
– createStack(),Push(),Pop()

– stackTop(),isEmpty(),isFull()

Thank
You

http://comp.utm.my/

